EMA ELECTRICAL MULTIFUNCTION ANALYZER RECORDER COMMUNICATION PROTOCOL

- ASCII standard EMA
- MODBUS-RTU

USER MANUAL
IM 145-U v. 6.6

Firmware Vers. X.11.25
$X=4 \div 9$

For other communication protocol available on EMA analyzer please to see specific instruction manual.

Optional communication protocol available are:

- PROFIBUS-DP
- ethernet TCP/IP

For other communication protocol please contact our service.
Information in this document is subject to change without notice and does not represent a commitment on the part of CONTREL ELETTRONICA

This documentation is consigned to the customer to enable the correct and safe operation of the instrument; any other use of documentation is strictly prohibited.
The information contained herein is the property of CONTREL ELETTRONICA. And by law, no part of it may be reproduced, transcribed, stored in any retrieval system, or translated into any language by means (even for internal purposes by the customer) without the express written permission of CONTREL ELETTRONICA

In addition, no part of this manual may be transmitted in any form by any means, including photocopying and recording, for any purposes, without the express written permission of CONTREL ELETTRONICA.

In case of Copyright violation the customer is directly responsible.

INDEX

INSTRUCTION MANUAL 1

1) ASCII STANDARD EMA COMMUNICATION PROTOCOL 3
1.1) EMA SERIAL COMMUNICATION PROTOCOL 3
1.2) IDENTIFICATION SEQUENCE 3
1.3) DATA REQUEST SEQUENCE ($\mathrm{R}=$ Request or Reading) 3
1.4) PARAMETER SETTING SEQUENCE 6
1.5) CHECK CHARACTERS 7
1.6) VARIABLES (Reading codes) 8
1.7) PROGRAMMABLE PARAMETERS (Writing codes) 12
1.8) PROGRAMMABLE PARAMETERS (Writing codes crescent order) 18
1.9) ERROR MESSAGES 20
1.10) NOTES 20
2) MODBUS-RTU COMMUNICATION PROTOCOL 21
2.1) MODBUS PROTOCOL 21
2.2) READING OF THE REGISTERS (Function Code \$ 03) 23
2.3) SETUP OF THE EMA PARAMETERS (Function Code \$ 10) 25
2.4) ERROR MESSAGE FROM SLAVE TO MASTER 26
2.5) DIAGNOSTIC (Function Code \$ 08) 27
2.6) REPORT SLAVE ID (Function Code \$ 11) 28
2.7) TABLE OF EMA REGISTERS 28
2.8) EXAMPLE OF READING AND SETUP REGISTERS 65
2.9) TROUBLESHOOTING 76
2.10) NOTES 76

1) ASCII STANDARD EMA COMMUNICATION PROTOCOL

1.1) EMA SERIAL COMMUNICATION PROTOCOL

Serial communication occurs between a device and a Host computer according to a master-slave model, in which the device is configured as the slave.
The communication through a defined protocol is carried out on a single line (half duplex), meaning that messages are sent in to opposite directions in different time.
The device places itself in a reception mode when it receives a STX (Start of TeXt) character; and it remains in this condition until it receives an ETX (End of TeXt) character.
The characters used for the communication are all part of the ASCII (American Standard Code for Information Interchange)

1.2) IDENTIFICATION SEQUENCE

For a multi-drop connection, each slave must have a specific code in order to be identified by the Host device, avoiding errors on the communication line.
To avoid communication errors and to optimize the line speed the operator may assign to each unit a logical number (address or node)
Beside of the possibility to identify the device through a logical number the operator may assign to the slave a serial number instead (serial number is assigned by the manufacturer).
Suggested is to assign a logical number in order to speed-up the whole communication process.

1.3) DATA REQUEST SEQUENCE (R = Request or Reading)

To start a sequence of data request the operator may proceed in the following order:
EXAMPLE 1:

$<$ STX $>01 R 80<$ ETX $>$ (5AH)	
$<$ STX $>$	Start block character
01	Instrument identification
R80	Command
$<$ ETX>	End block character
(5AH $)$	Check character

Start block character

Always <STX> (02H) begins the string of block character or message

Instrument identification

The instrument identification is represented through its logical number, address/node expressed in hexadecimals code (01-FF).

Command

The command to be sent is always expressed with the character $R(52 \mathrm{H})$, which means Read, followed by the variable numbers, expressed in hexadecimals.

End block character

Always <ETX> (03H) ends the string of block character or message.

Check character

This characters is obtained from the addition of the XOR logical functions, normally this check is used to verify the transmitted data.

EXAMPLE 1 (of calculated Check Character):
If the reading of rms voltage measured by the EMA 10 shall be initialized than the following process may be followed:

If $<$ STX >01 R80<ETX $>(5 A H)$ is the message to be sent than:

STX	02 H	XOR
0	30 H	XOR
1	31 H	XOR
R	52 H	XOR
8	38 H	XOR
0	30 H	XOR
ETX	03 H	$=$
BCC $=5 \mathbf{A H}$		

H stays for Hexadecimal
DATA ANSWERING SEQUENCE of EXAMPLE 1
The unit which recognizes the own serial number or logical address/node, answers with the following message:

$<$ STX $>+\mathbf{4 0 0 . 0}$ <SP><ETX><SPC>	
$<$ STX $>$	Start block character
$+400.0<$ SP $>$	Data block
$<$ ETX $>$	End block character
$<$ SPC $>$	Check character $(<$ SPC $>=$ SPACE $=20 \mathrm{H}$)

Start block character

Always <STX> (02H) begins the string of block character or message

Data block

The data block is the parameter value and can represent the following:
Example 1: $+400.0<$ SP $>$ is the answer of variable number request 81,82 or 83.
$<$ SP>, multiplier ($\times 1$).
The multiplier may be the following:

\langle SP $>$	space	$(\times 1)$	Example: $+400.0<$ SP $>$
K	Kilo	$(\times 1000)$	Example: +123.456 k
M	Mega	$(\times 1000000)$	Example: +1.256 M
G	Giga	$(\times 1000000000)$	Example: +12.4 G

End block character

Always <ETX> $(03 \mathrm{H})$ ends the string of block character or message.

Check character

This characters is obtained from the addition of the XOR logical functions, normally this check is used to verify the transmitted data.

The EMA, if questioned, will reply, if the conditions BCC (Block Check Character) is satisfied, with the following message to the operator:

$$
<S T X>+400.0<S P><E T X>(20 H)
$$

EXAMPLE 2:

$<$ STX $>$ 01RD1<ETX $>$ (27H)	
$<$ STX $>$	Start block character
01	Instrument identification
RD1	Command
$<$ ETX $>$	End block character
$(27 H)$	Check character

Start block character

Always <STX> (02H) begins the string of block character or message

Instrument identification

The instrument identification is represented through its logical number, address/node expressed in hexadecimals code (01-FF).

Command

The command to be sent is always expressed with the character $R(52 \mathrm{H})$, which means Read, followed by the variable numbers, expressed in hexadecimals.

End block character

Always <ETX> (03H) ends the string of block character or message.

Check character

This characters is obtained from the addition of the XOR logical functions, normally this check is used to verify the transmitted data.

EXAMPLE 2 (of calculated Check Character):

If the reading of 15 ' average power stored in the RAM of EMA 10 shall be initialized than the following process may be followed:

If $<$ STX >01 RD1 $<E T X>(\mathbf{2 7 H})$ is the message to be sent than:

STX	02 H	XOR
0	30 H	XOR
1	31 H	XOR
R	52 H	XOR
D	44 H	XOR
1	31 H	XOR
ETX	03 H	$=$
BCC $=\mathbf{2 7 H}$		

H stays for Hexadecimal

DATA ANSWERING SEQUENCE of EXAMPLE 2

The unit answers with an error message:
$<S T X>E 014<E T X>(71 H)$

E014, error E014 indicates that the 15' average power were not stored, impossible answering to the Host, message is over.

1.4) PARAMETER SETTING SEQUENCE

Setting sequence is always carried-out by a Host device in order to change specific parameters, if necessary, on the instrument.
As parameter setting sequence the operator may change from the Host device all the settings of the instrument as KTA, KTV, P av., B. Light, Date-Time I/O etc.
The following operation must be considered when sending the parameter setup to the unit:
<STX>S110903001W04=01<ETX>(74H)
<STX>
Always <STX> (02H) begins the string of block character or message.

S110903001

The character $S(53 \mathrm{H})$ is followed by the serial number (identification number) of the instrument or by the logical number. If serial number is chosen than maximum 9 characters must be defined, if logical number is chosen than 2 character in hexadecimal ($01-\mathrm{FF}$) must be defined.

W04=

The command $\mathrm{W}(57 \mathrm{H})$ means Write followed by the variable number to be set, expressed in decimals characters and always followed by the character $=(3 \mathrm{DH})$.

01
The new alphanumerical value, which is going to be programmed on the instrument.
<ETX>
Always <ETX> $(03 \mathrm{H})$ ends the string of block character or message.
EXAMPLE 1:
Logical Number Setting (01, expressed in hexadecimal) of EMA 11 with serial number 110903001. <STX> S110903001W04=01<ETX>

The BCC (Check Character is calculated as following:

STX	02 H	XOR
S	53 H	XOR
1	31 H	XOR
1	31 H	XOR
0	30 H	XOR
9	39 H	XOR
0	30 H	XOR
3	33 H	XOR
0	30 H	XOR
0	30 H	XOR
1	31 H	XOR
W	57 H	XOR
0	30 H	XOR
4	34 H	XOR
$=$	$3 D \mathrm{H}$	XOR
0	30 H	XOR
1	31 H	XOR
ETX	03 H	$=$
BCC	$=06 \mathrm{H}$	

DATA ANSWERING SEQUENCE of EXAMPLE 2

Once the setting were identified by the instrument, the following messages will be sent from the instrument to the Host:
$<$ STX>E000<ETX> (74H)
where,
<STX>
Always <STX> $(02 \mathrm{H})$ begins the string of block character or message.

E000

Error message, E (45H), followed by 3 numerical characters which shows the type of error, see chapter 1.9)
Code E000 indicates that the operation has been carried out correctly.
<ETX>
Always <ETX> $(03 \mathrm{H})$ ends the string of block character or message.
(74H)
Check character is obtained from the addition of the XOR logical functions, normally this check is used to verify the transmitted data.

1.5) CHECK CHARACTERS

<STX> Start of Text (02H)
Start of text characters.
<ETX> End of Text(03H)
End of text characters.
BCC Block Check Character
It is represented by a 2 digit characters, resulting from EXCLUSIVE OR (XOR) of all the characters from <STX> up to, including, <ETX>, used to verify the transmitted data.
1.6) VARIABLES (Reading codes)

N.Var	Description	Command
000	INFO STORAGE AVG.POWERS	R00
001	INFO STORAGE MIN./MAX.	R01
002	INFO STORAGE HARMONICS	R02
003	INFO STORAGE SAMPLES Answer format: <STX>srrrrraaaa.auuuu.uffff.f<ETX>(BCC) $\mathrm{s}=$ status ($0=\mathrm{OFF} ; 1=\mathrm{ON}$) rrrrr=number of stored records aaaa. $\mathrm{a}=$ memory available for archive (KB) uuuu.u=memory used by archive (KB) ffff.f=memory free for archive (KB)	R03
004	NEUTRAL CURRENT	R04
005	3-PHASE SYSTEM ACTIVE ENERGY (acquired) (double format)	R05
006	3-PHASE SYSTEM ACTIVE ENERGY (transferred) (double format)	R06
007	3-PHASE SYSTEM REACTIVE ENERGY (inductive) (double format)	R07
008	3-PHASE SYSTEM REACTIVE ENERGY (capacitive) (double format)	R08
009	HW \& OPTIONS INFO Return an integer 16bit value. Bit0: harmonic ($0=$ disabled; $1=$ enabled) Bit1: timebandds ($0=$ disabled; $1=$ enabled) Bit2 $\div 3$: reserved Bit $4 \div 7$: number of Digital Input ($0 \div 15$) Bit8 $\div 11$: number of Digital Output $(0 \div 15)$ Bit $12 \div 15$: number of Analog Output ($0 \div 15$)	R09
010	AVERAGE REACTIVE POWER	ROA
011	AVERAGE LINE 1 CURRENT	ROB
012	AVERAGE LINE 2 CURRENT	ROC
013	AVERAGE LINE 3 CURRENT	ROD
014	INFO STORAGE COUNTERS Answer format: <STX>srrrrraaaa.auuuu.ufff.f<ETX>(BCC) $\mathrm{s}=$ status ($0=\mathrm{OFF} ; 1=\mathrm{ON}$) rrrrr=number of stored records aaaa. $\mathrm{a}=$ memory available for archive (KB) uuuu.u=memory used by archive (KB) ffff.f=memory free for archive (KB)	R0E
016	PWM OUT ANALOG 1	R10
017	PWM OUT ANALOG 2	R11
018	PWM OUT ANALOG 3	R12
019	PWM OUT ANALOG 4 $0=0 \mathrm{~mA} \div 255=20 \mathrm{~mA}$	R13
021	TOTAL ENERGY BAND 1	R15
022	TOTAL ENERGY BAND 2	R16
023	TOTAL ENERGY BAND 3	R17
024	TOTAL ENERGY BAND 4 Answer format: <STX>Wh+><SP>Wh-><SP>Varh $+><$ SP>Varh-<ETX>(BCC)	R18
032	GENERIC COUNTER 1 VALUE	R20
033	GENERIC COUNTER 2 VALUE	R21
034	GENERIC COUNTER 3 VALUE	R22
035	GENERIC COUNTER 4 VALUE	R23
036	GENERIC COUNTER 5 VALUE	R24
037	GENERIC COUNTER 6 VALUE	R25
038	GENERIC COUNTER 7 VALUE	R26
039	GENERIC COUNTER 8 VALUE	R27
040	GENERIC COUNTER 1 SETTING	R28
041	GENERIC COUNTER 2 SETTING	R29
042	GENERIC COUNTER 3 SETTING	R2A
043	GENERIC COUNTER 4 SETTING	R2B
044	GENERIC COUNTER 5 SETTING	R2C
045	GENERIC COUNTER 6 SETTING	R2D
046	GENERIC COUNTER 7 SETTING	R2E
047	GENERIC COUNTER 8 SETTING	R2F

	Answer format: <STX>i<SP>j<SP>username<SP>k<ETX>(BCC) $\mathrm{i}=$ Digital Input associated to the counter $j=$ name index ($0=k W h+; 1=k W h-; 2=k V A R h+; 3=k V A r h-; 4=$ Water; $5=$ Gas; $6=$ user name username $=$ counter's name defined by the user (xxxxxxxx) $\mathrm{k}=$ pulse's weight (00000.00)	
060	HOUR COUNTER Answer: 6 values of 9 digits separed by spaces.	R3C
128	THREE-PHASE SYSTEM VOLTAGE (rms)	R80
129	PHASE L1 VOLTAGE (rms)	R81
130	PHASE L2 VOLTAGE (rms)	R82
131	PHASE L3 VOLTAGE (rms)	R83
132	PHASE L1-L2 VOLTAGE (rms)	R84
133	PHASE L2-L3 VOLTAGE (rms)	R85
134	PHASE L3-L1 VOLTAGE (rms)	R86
136	THREE-PHASE SYSTEM CURRENT (rms)	R88
137	LINE L1 CURRENT (rms)	R89
138	LINE L2 CURRENT (rms)	R8A
139	LINE L3 CURRENT (rms)	R8B
140	THD IL1(Total Harmonic Distortion \%)	R8C
141	THD IL2(Total Harmonic Distortion \%)	R8D
142	THD IL3(Total Harmonic Distortion \%)	R8E
144	THREE-PHASE SYSTEM POWER FACTOR	R90
145	PHASE L1 POWER FACTOR	R91
146	PHASE L2 POWER FACTOR	R92
147	PHASE L3 POWER FACTOR	R93
148	3-PHASE SYSTEM COSFI	R94
149	PHASE L1 COSFI	R95
150	PHASE L2 COSFI	R96
151	PHASE L3 COSFI	R97
152	3-PHASE SYSTEM APPARENT POWER	R98
153	PHASE L1 APPARENT POWER	R99
154	PHASE L2 APPARENT POWER	R9A
155	PHASE L3 APPARENT POWER	R9B
160	3-PHASE SYSTEM ACTIVE POWER	RAO
161	PHASE L1 ACTIVE POWER	RA1
162	PHASE L2 ACTIVE POWER	RA2
163	PHASE L3 ACTIVE POWER	RA3
168	3-PHASE SYSTEM REACTIVE POWER	RA8
169	PHASE L1 REACTIVE POWER	RA9
170	PHASE L2 REACTIVE POWER	RAA
171	PHASE L3 REACTIVE POWER	RAB
176	3-PHASE SYSTEM ACTIVE ENERGY (acquired)	RB0
177	3-PHASE SYSTEM REACTIVE ENERGY (inductive)	RB1
178	3-PHASE SYSTEM ACTIVE ENERGY (transferred)	RB2
179	3-PHASE SYSTEM REACTIVE ENERGY (capacitive)	RB3
180	FREQUENCY	RB4
182	THD VL1(Total Harmonic Distortion \%)	RB6
183	THD VL2(Total Harmonic Distortion \%)	RB7
184	THD VL3(Total Harmonic Distortion \%)	RB8
185	AVERAGE ACTIVE POWER	RB9
186	AVERAGE CURRENT	RBA
187	AVERAGE REACTIVE POWER	RBB
188	INTERNAL TEMPERATURE	RBC
189	AVERAGE LINE L1 CURRENT	RBD
190	AVERAGE LINE L2 CURRENT	RBE
191	AVERAGE LINE L3 CURRENT	RBF
192	VARIABLE GROUP FROM 128 TO 185 Received variables are: $(128,129,130,131,132,133,134,136,137,138,139,144,145,146,147,152$, $153,154,155,160,161,162,163,168,169,170,171,176,177,178,179,180,182,183,184,185)$	RC0

193	NEUTRAL CURRENT	RC1
194	VOLTAGE UNBALANCE	RC2
195	CURRENT UNBALANCE	RC3
208	Variable group programmable by the operator Refer to variable D0.	RD0
209	First stored value in RAM of average power Average power transfer, at the end of the received block, it is necessary to confirm the command wo6 to the unit when the block has been received correctly; repeat transfer steps until all blocks has been transferred.	RD1
211	FIRST STORED VALUE OF HARMONICS Harmonics transfer, at the end of the received block, it is necessary to confirm the command woB to the unit when the block has been received correctly; repeat transfer steps until all blocks has been transferred.	RD3
212	INFO COUNTER RECORD Answer format: <STX>yymmddhnnn0000010001rrrrE<ETX>(BCC) yy: year mm: month dd: day hh: hour nn: minutes rrr: rate (minutes)	R

237	MIN/MAX 3-PHASE SYSTEM APPARENT POWER	RED
238	MIN/MAX 3-PHASE SYSTEM POWER FACTOR	REE
239	MIN/MAX AVERAGE POWER	REF
240	DATE (dd/mm/yy)	RF0
241	TIME ($\mathrm{hh} / \mathrm{mm} / \mathrm{ss}$)	RF1
242	DAY OF THE WEEK (i.e. Saturday, 10 characters)	RF2
244	ALL BAND ENERGY COUNTERS Relative to: Year, Previous Year.	RF4
245	ALL BAND ENERGY COUNTERS Relative to: Today, Yesterday, This Month, Previous Month.	RF5
246	SAMPLINGS RELATIVE TO THE VOLTAGE SIGNAL PHASE 1,2 AND 3 Answer format: <STX><SP>768 characters (64samples $\times 4$ characters $\times 3$ voltages) <ETX> (BCC)	RF6
247	SAMPLINGS RELATIVE TO THE CURRENT SIGNAL PHASE 1,2 AND 3 Answer format: <STX><SP>768 characters (64samples $\times 4$ characters $\times 3$ currents)<ETX> (BCC)	RF7
248	INSTRUMENT FIRMWARE RELEASE	RF8
249	INSTANT VALUES OF VOLTAGE PHASE 1 HARMONICS Answer format: <STX><SP>160 characters ($00000+31$ harmonics $x 5$ characters) $<E T X>$ (BCC) The first 00000 is only for internal uses.	RF9
250	INSTANT VALUES OF VOLTAGE PHASE 2 HARMONICS Answer format: <STX><SP>160 characters ($00000+31$ harmonics $\times 5$ characters) $<E T X>(B C C)$ The first 00000 is only for internal uses.	RFA
251	INSTANT VALUES OF VOLTAGE PHASE 3 HARMONICS Answer format: <STX><SP>160 characters ($00000+31$ harmonics $\times 5$ characters) <ETX>(BCC) The first 00000 is only for internal uses.	RFB
252	INSTANT VALUES OF CURRENT PHASE 1 HARMONICS Answer format: <STX><SP> 160 characters ($00000+3$ hharmonics $\times 5$ characters)<ETX>(BCC) The first 00000 is only for internal uses.	RFC
253	INSTANT VALUES OF CURRENT PHASE 2 HARMONICS Answer format: <STX><SP>160 characters ($00000+31$ harmonics $\times 5$ characters) $<E T X>$ (BCC) The first 00000 is only for internal uses	RFD
254	INSTANT VALUES OF CURRENT PHASE 3 HARMONICS Answer format: <STX><SP>160 characters ($00000+31$ harmonics $\times 5$ characters) $<E T X>(B C C)$ The first 00000 is only for internal uses.	RFE
255	SUB-VERSION FIRMWARE	RFF

1.7) PROGRAMMABLE PARAMETERS (Writing codes)

000	SERIAL COMMUNICATION format: (Baud rate, Parity, Bit, Stop) Baud Rate 1200, 2400, 4800, 9600, 19200 Parity $\quad N=$ None, E=Even, O=Odd Bit 7, 8 Stop 1,2 Ex.: W00=9600,N,8,1	W00
004	LOGICAL ADDRESS Range of value: 00ㄷf ($0 \div 255$) Ex.: W04=1b	W04
005	DELETING OF THE $1^{\text {ST }}$ BLOCK OF VALUES OF COUNTERS STORED IN RAM	W05
009	DATE/TIME/DAY Format: (yymmddhhmmssD) D = day of the week ($1=$ Monday........ $7=$ Sunday)	W09
010	SOLAR/SUMMER TIME HOUR CHANGE 00-23:hour of the change 24: disabled	WOA
024	INTEGRATION TIME FOR AVERAGE POWER CALCULATION Range: 1 $\div 99$ (min.) Ex.: W18=15	W18
027	BACKLIGHT ON TIME (seconds) Range: $1 \div 360$ (seconds) 0 : always on Ex.: W1B=60	W1B
028	FREQUENCY MEASURING RANGE Format: s,ffff S: synchronization type ($0=$ internal, $1=$ external from V-L1) ffff: frequency*100 Range: $5 \div 500 \mathrm{~Hz}$ Ex.: W1C=0,5000 (50.00 Hz internal)	W1C
016	TRANSFORMING RATIO CT Range: $0.01 \div 9999.99$ Ex.: W10=100.00	W10
018	TRANSFORMING RATIO VT Range: 0.01 $\div 9999.99$ Ex.: W12=1000.00	W12
006	DELETING OF THE $1^{\text {ST }}$ BLOCK OF VALUES OF AVERAGE POWER STORED IN RAM	W06
007	DELETING ALL MIN/MAX VALUES STORED IN RAM	W07
008	DELETING OF THE $1^{\text {ST }}$ BLOCK OF VALUES OF VALUE OF MIN/MAX STORED IN RAM	W08
011	DELETING OF THE $1^{\text {ST }}$ BLOCK OF VALUES OF HARMONIC STORED IN RAM	WOB
029	DELETING THE $1^{\text {ST }}$ BLOCK OF VALUES OF SAMPLES STORED IN RAM	W1D
015	DELETING OF ALL VALUES STORED IN RAM Ex.: WOF=00	W0F
020	PROGRAMMING, ERASING OF THE VALUES STORED IN RAM 1 or $0,15^{\prime} \mathrm{Av}$. Power storing $1=\mathrm{YES}, 0=\mathrm{NO}$ 1 or $0, \mathrm{Min} /$ Max storing $\quad 1=$ YES, $0=$ NO 1 or 0 , Harmonics storing $\quad 1=$ YES, $0=$ NO 1 or 0 Sample values storing 1 or 0 Counters values storing 1 = YES, $0=$ NO $1=\mathrm{YES}, 0=\mathrm{NO}$ Ex.: for storing Min/Max W14=0,1,0,0	W14
021	PROGRAMMING MIN/MAX AND SAMPLES CAMPAIGN ACQUISITION Ex. MIN/MAX values storing 1: MIN/MAX storing 0060 : sampling rate for MIN/MAX storing expressed in minutes. E4...EF : MIN/MAX variable to store in RAM W15=1,0060,E4E5E6E7E8E9EAEBECEDEEEF Ex. Sample values storing 2: Sample storing 0010 : sampling rate for Sample storing expressed in seconds. 80...A8 : Variable number to store in RAM W15=2,0010,80818283889098A0A8	W15
022	PROGRAMMING COUNTERS CAMPAIGN ACQUISITION Ex. counters values storing 0060: sampling rate for counters storing expressed in minutes. E4...EF: counters variable to store in RAM W16=1,0060,E4E5E6E7E8E9EAEBECEDEEEF	W16
031	ENERGY RESET 43000: energy values (B0, B1, B2, B3) reset 75000: time-band energy reset 75430: all energy values reset Ex.: W1F=75000	W1F

DIGITAL OUTPUT 1

DIGITAL OUTPUT 1		
032	PULSE Format: B0 : variable to associate (hex.) 0.125 : pulse coefficient (kWh \div kVARh); range: $0 \div 10.00$ 250: pulse duration time (msec.); range: 50 $\div 500$ Ex.: W20 = B0,0.125,250	W20
033	THRESHOLD Format: A0 : variable to associate (hex.) L : Lower limit H : Higher limit N : Always on 5000 : intervention value 15 : hysteresis percentage value (intervention threshold); range: 0 $\div 99$ 30 : delay time on threshold intervention (seconds); range: $0 \div 999$ Ex.: W21 = A0,H,5000,15,30	W21
056	BAND Format: 81: variable to associate B: Band 100: min intervention value 300: max intervention value 15: hysteresis percentage value (intervention threshold); range: $0 \div 99$ 30: delay time on threshold intervention (seconds); range: $0 \div 999$ Ex.: $W 38=81, B, 100,300,15,30$	W38

DIGITAL OUTPUT 2

048	PULSE Format: B0 : variable to associate 0.125 : pulse coefficient (kWh $\div \mathrm{kVARh}$); range: $0 \div 10.00$ 250 : pulse duration time (msec.); range: 50 $\div 500$ Ex. $\mathrm{W} 30=\mathrm{B} 0,0.125,250$	W30
049	THRESHOLD Format: A0 : variable to associate L : Lower limit H : Higher limit N : Always on 200000 : intervention value 15 : hysteresis percentage value (intervention threshold); range: $0 \div 99$ 30 : delay time on threshold intervention (seconds); range: $0 \div 999$ Ex. W31 = A0,H,200000,15,30	W31
057	BAND Format: 82 : variable to associate B : Band 10.55 : min intervention value 20 : max intervention value 15 : hysteresis percentage value (intervention threshold); range: $0 \div 99$ 30 : delay time on threshold intervention (seconds); range: $0 \div 999$ Ex.: $W 39=82, B, 10.55,20,15,30$	W39

DIGITAL OUTPUT 3

PULSE
Format
036
B0 : variable to associate
0.125 : pulse coefficient ($\mathrm{kWh} \div \mathrm{kVARh}$); range: $0 \div 10.00$

250 : pulse duration time (msec.); range: 50 $\div 500$
Ex. W24 = B0,0.125,250
THRESHOLD
Format:
98 : variable to associate
L : Lower limit

| H : Higher limit | W25 |
| :--- | :--- | :--- |
| N : Always on | |

N : Always on
0.90 : intervention value

15 : hysteresis percentage value (intervention threshold); range: $0 \div 99$
20 : delay time on threshold intervention (seconds); range: $0 \div 999$
Ex. W25 $=98, \mathrm{~L}, 0.90,15,20$
BAND
Format:
A0 : variable to associate
B : Band
1000 : min intervention value
15000 : max intervention value
15 : hysteresis percentage value (intervention threshold); range: 0 099
30 : delay time on threshold intervention (seconds); range: 0 $\div 999$
Ex.: W3E $=A 0, B, 1000,15000,15,30$

DIGITAL OUTPUT 4		
038	PULSE Format B0 : variable to associate 0.125 : pulse coefficient (kWh $\div \mathrm{kVARh}$); range: $0 \div 10.00$ 250 : pulse duration time (msec.); range: $50 \div 500$ Ex. W26 = B0,0.125,250	W26
039	THRESHOLD Format: A0 : variable to associate L : Lower limit H : Higher limit N : Always on 200000 : intervention value 15 : hysteresis percentage value (intervention threshold); range: 0 $\div 99$ 030 : delay time on threshold intervention (seconds); range: $0 \div 999$ Ex. W27 = A0,H,200000,15,30	W27
059	BAND Format: 88 : variable to associate B : Band 10 : min intervention value 150 : max intervention value 15 : hysteresis percentage value (intervention threshold); range: $0 \div 99$ 30 : delay time on threshold intervention (seconds); range: 0 $\div 999$ Ex.: $\mathrm{W} 3 \mathrm{~B}=88, B, 10,150,15,30$	W3B

DIGITAL OUTPUT 5

040	```PULSE Format: B0 : variable to associate 0.125 : pulse coefficient (kWh \(\div\) kVARh); range: \(0 \div 10.00\) 250 : pulse duration time (msec.); range: \(50 \div 500\) Ex. W26 = B0,0.125,250```	W28
041	THRESHOLD Format: A0 : variable to associate L : Lower limit H : Higher limit N : Always on 200000 : intervention value 15 : hysteresis percentage value (intervention threshold); range: $0 \div 99$ 30 : delay time on threshold intervention (seconds); range: 0 $\div 999$ Ex. W27 = A0,H,200000, 15,30	W29
060	BAND Format: 89 : variable to associate B : Band 10.5 : min intervention value 15.5 : max intervention value 15 : hysteresis percentage value (intervention threshold); range: $0 \div 99$ 30 : delay time on threshold intervention (seconds); range: $0 \div 999$ Ex.: $W 3 C=89, B, 10.5,15.5,15,30$	W3C

DIGITAL OUTPUT 6

DIGITAL OUTPUT 6		
042	PULSE Format B0 : variable to associate 0.125 : pulse coefficient (kWh \div kVARh); range: $0 \div 10.00$ 250 : pulse duration time (msec.); range: $50 \div 500$ Ex. $\mathrm{W} 26=\mathrm{B} 0,0.125,250$	W2A
043	THRESHOLD Format: A0 : variable to associate L : Lower limit H : Higher limit N : Always on 200000 : intervention value 15 : hysteresis percentage value (intervention threshold); range: $0 \div 99$ 30 : delay time on threshold intervention (seconds); range: $0 \div 999$ Ex. W27 $=$ A0,H,200000, 15,30	W2B
061	BAND Format: A8 : variable to associate B : Band -10000 : min intervention value 15000 : max intervention value 15 : hysteresis percentage value (intervention threshold); range: 0 $\div 99$ 30 : delay time on threshold intervention (seconds); range: 0 $\div 999$ Ex.: W3D = A8,B,- $-10000,15000,15,30$	W3D

ANALOG OUTPUT 1		
035	ANALOG Format: 80 : variable to associate (hex.) 0/4: 0 : Mono-directional output $0-20 \mathrm{~mA}$ 4 : Mono-directional output 4-20mA 100 : minimum value. 300.50 : maximum value. Ex. W23 $=80,0,100,300.50$	W23

ANALOG OUTPUT 2

ANALOG

Format:
80 : variable to associate
051
0/4: 0 : Mono-directional output 0-20mA
4 : Mono-directional output $4-20 \mathrm{~mA}$
W33
00.00 : minimum value.
30.00 : maximum value.

Ex. $\mathrm{W} 33=80,4,100,300$

ANALOG OUTPUT 3		
052	ANALOG Format: A8 : variable to associate 0/4: 0 : Mono-directional output 0-20mA 4 : Mono-directional output 4-20mA 100 : minimum value. 300 : maximun value. Ex. W34 = A8,0,100,300	W34

ANALOG OUTPUT 4		
053	ANALOG Format: A8 : variable to associate 0/4: 0 : Mono-directional output $0-20 \mathrm{~mA}$ 4 : Mono-directional output $4-20 \mathrm{~mA}$ 100 : minimum value. 300 : maximum value. Ex. $\mathrm{W} 35=\mathrm{A} 8,4,100,300$	W35

079	MIN/MAX VALUES RESET Ex.: W=00	W4F	
080	VARIABLE PROGRAMMING 50 If less than 5 values are programmed, than replace the not used values with FF. Ex.: <STX>0AW50=81, 98, A8, B0, B4<ETX>(6AH) Ex.: <STX>0AW50=80, C0, FF, FF, FF<ETX>(64H) $81,98, \mathrm{~A}, \mathrm{~B} 0, \mathrm{~B} 4$ are single values C 0 is variable groups FF is used to replace the values which wants not to be read.	W50	
081	TARIFF PROGRAMMING Format: 1: Tariff period ($1=$ period $1,2=$ period $2, \ldots \ldots . . \mathrm{A}=$ period 10) hhmmb : start time - band (Start hh:mm) and b band ($0=$ band1, $1=$ band2, $2=$ band $3,3=$ band 4) D: Day of the week, days are in the following order: Mon,Tue,Wed,Thu,Fri,Sat,Sun - 0=day disabled, 1=day enabled M : Month selection (Jan, Feb, Mar, Apr.......Dec) $0=$ month disabled, $1=$ month enabled Ex.: W51=105000060010700208003090001000111002120031111100111000000111 $\mathrm{p}\|\mathrm{1b}\| 2 \mathrm{~b}\|3 \mathrm{~b}\| \mathrm{4b}\|5 \mathrm{~b}\| \mathrm{6b}\|7 \mathrm{~b}\| \mathrm{8b} \mid$ day\| month		W51

ENERGY COUNTER PRESET		
065	3-PHASE SYSTEM ACTIVE ENERGY (acquired) (double format)	W65
066	3-PHASE SYSTEM ACTIVE ENERGY (transferred) (double format)	W66
067	3-PHASE SYSTEM REACTIVE ENERGY (inductive) (double format)	W67
068	3-PHASE SYSTEM REACTIVE ENERGY (capacitive) (double format)	W68

090	ENERGY TYPE 0=normal (kWh-kVArh) $1=$ heavy (MWh-MVArh) Ex.:W5A $=1$	W5A

091	DIGITAL INPUT TYPE $0=$ not used; $1=$ sync. Rtc $2=$ periods $3=$ generic couters 4= GMC 5= GME 6= ELKO Ex: W5B=1	W5B
095	$\begin{aligned} & \hline \text { WIRING MODE } \\ & 0=4 \text { wire } \\ & 1=3 \text { wire } \\ & \text { 2= Aron } \\ & \text { Ex: W5F=2 } \\ & \hline \end{aligned}$	W5F

GENERIC COUNTER		
160	GENERIC COUNTER 1 VALUE	WA0
161	GENERIC COUNTER 2 VALUE	WA1
162	GENERIC COUNTER 3 VALUE	WA2
163	GENERIC COUNTER 4 VALUE	WA3
164	GENERIC COUNTER 5 VALUE	WA4
165	GENERIC COUNTER 6 VALUE	WA5
166	GENERIC COUNTER 7 VALUE	WA6
167	GENERIC COUNTER 8 VALUE	WA7
	Ex: WA0=10000000.0	
168	GENERIC COUNTER 1 SETTING	WA8
169	GENERIC COUNTER 2 SETTING	WA9
170	GENERIC COUNTER 3 SETTING	WAA
171	GENERIC COUNTER 4 SETTING	WAB
172	GENERIC COUNTER 5 SETTING	WAC
173	GENERIC COUNTER 6 SETTING	WAD
174	GENERIC COUNTER 7 SETTING	WAE
175	GENERIC COUNTER 8 SETTING	WAF
	Format: WAx=\|<SP>j<SP>username<SP>k $\mathrm{i}=$ Digital Input associated to the counter $\mathrm{j}=$ name index ($0=k W h+; 1=k W h-; 2=k V A R h+; 3=k V A r h-; 4=$ Water; $5=$ Gas; 6=user name username= counter's name defined by the user (xxxxxxxx) $\mathrm{k}=$ pulse's weight (00000.00) Ex. WA8=1 6 LEVEL1 00001.0	

1.8) PROGRAMMABLE PARAMETERS (Writing codes crescent order)

000	SERIAL COMMUNICATION	W00
004	LOGICAL ADDRESS	W04
006	DELETING OF THE FIRST BLOCK OF VALUES OF AVERAGE POWER STORED IN RAM	W06
007	DELETING ALL MIN/MAX VALUES STORED IN RAM	W07
008	DELETING OF THE FIRST BLOCK OF VALUES OF VALUE OF MIN/MAX STORED IN RAM	W08
009	DATE/TIME/DAY	W09
010	SOLAR/SUMMER TIME HOUR CHANGE	W0A
011	DELETING OF THE FIRST BLOCK OF VALUES OF HARMONIC STORED IN RAM	W0B
015	DELETING OF ALL VALUES STORED IN RAM	W0F
016	TRANSFORMING RATIO CT	W10
018	TRANSFORMING RATIO VT	W12
020	PROGRAMMING, ERASING OF THE VALUES STORED IN RAM	W14
021	PROGRAMMING MIN/MAX AND SAMPLES CAMPAIGN ACQUISITION	W16
022	PROGRAMMING COUNTERS CAMPAIGN ACQUISITION	W18
024	INTEGRATION TIME FOR AVERAGE POWER CALCULATION	W1B
027	BACKLIGHT ON TIME (seconds)	W1C
028	FREQUENCY MEASURING RANGE	W1D
029	DELETING THE FIRST BLOCK OF VALUES OF SAMPLES STORED IN RAM	W1F
031	ENERGY RESET	

DIGITAL OUTPUT 1			
032	PULSE	W20	
033	THRESHOLD	W21	
035	ANALOG	ANALOG OUTPUT 1	

DIGITAL OUTPUT 3		
036	PULSE	W24
037	THRESHOLD	W25

DIGITAL OUTPUT 4		
038	PULSE	W26
039	THRESHOLD	W27
040	PULSE	DIGITAL OUTPUT 5
041	THRESHOLD	W28

DIGITAL OUTPUT 6		
042	PULSE	W2A
043	THRESHOLD	W2B

DIGITAL OUTPUT 2		
048	PULSE	W30
049	THRESHOLD	W31

ANALOG OUTPUT 2		
051	ANALOG	W33

ANALOG OUTPUT 3		
052	ANALOG	W34
	ANALOG OUTPUT 4	W35

DIGITAL INPUT 1		
054	INPUT	W36
DIGITAL INPUT 2		
055	INPUT	W37
DIGITAL OUTPUT 1		
056	BAND	W38
DIGITAL OUTPUT 2		
057	BAND	W39
DIGITAL OUTPUT 4		
058	BAND	W3B
DIGITAL OUTPUT 5		
060	BAND	W3C
DIGITAL OUTPUT 6		
061	BAND	W3D
DIGITAL OUTPUT 3		
062	BAND	W3E
079	MIN/MAX VALUES RESET	W4F
080	VARIABLE PROGRAMMING 50	W50
081	TARIFF PROGRAMMING	W51
090	ENERGY TYPE	W5A
091	DIGITAL INPUT TYPE	W5B
095	WIRING MODE	W5F
101	3-PHASE SYSTEM ACTIVE ENERGY (acquired) (double format)	W65
102	3-PHASE SYSTEM ACTIVE ENERGY (transferred) (double format)	W66
103	3-PHASE SYSTEM REACTIVE ENERGY (inductive) (double format)	W67
104	3-PHASE SYSTEM REACTIVE ENERGY (capacitive) (double format)	W68
160	GENERIC COUNTER 1 VALUE	WAO
161	GENERIC COUNTER 2 VALUE	WA1
162	GENERIC COUNTER 3 VALUE	WA2
163	GENERIC COUNTER 4 VALUE	WA3
164	GENERIC COUNTER 5 VALUE	WA4
165	GENERIC COUNTER 6 VALUE	WA5
166	GENERIC COUNTER 7 VALUE	WA6
167	GENERIC COUNTER 8 VALUE	WA7
168	GENERIC COUNTER 1 SETTING	WA8
169	GENERIC COUNTER 2 SETTING	WA9
170	GENERIC COUNTER 3 SETTING	WAA
171	GENERIC COUNTER 4 SETTING	WAB
172	GENERIC COUNTER 5 SETTING	WAC
173	GENERIC COUNTER 6 SETTING	WAD
174	GENERIC COUNTER 7 SETTING	WAE
175	GENERIC COUNTER 8 SETTING	WAF

E000	No Error None error has been occurred during the data transmission.	
E004	No 15' (Buffer Empty) None of 15 ' values has been stored.	E014
E005	No Min/Max (Buffer Empty) None of Min/Max values has been stored.	E015
E006	No Harmonics (Buffer Empty) None of Harmonic values, both for voltage and current, up to the $31^{\text {st }}$ order has been stored.	E016
E007	No Sample (Buffer Empty) None of Sample values has been stored.	E017

1.10) NOTES

2) MODBUS-RTU COMMUNICATION PROTOCOL

2.1) MODBUS PROTOCOL

Modbus is a master-slave communication protocol able to support up to 247 slaves organized as a bus or as a star network;
The phisical link layer can be RS232 for a point to point connection or RS485 for a network.
The communication is half-duplex.
The network messages can be Query-Response or Broadcast type.
The Query-Response command is transmitted from the Master to an estabilished Slave and generally it is followed by an answering message.
The Broadcast command is transmitted from the Master to all Slaves and is never followed by an answer.

MODBUS use two modes for transmission.

A) ASCII Mode: uses a limited character set as a whole for the comunication.
B) RTU Mode: binary, with time frame synchronization,faster than the ASCII Mode, uses half so long data block than the ASCII Mode.

EMA analyzers employ RTU mode.
GENERIC MESSAGE STRUCTURE:

START	ADDRESS	FUNCTION	DATA	ERROR	END
OF					
FRAME	FIELD	CODE	FIELD	CHECK	ORAME

START OF FRAME $=$ Starting message marker
ADDRESS FIELD = Includes device address in wich you need to comunicate in Query-Response mode. In case the message is a Broadcast type it includes 00.
FUNCTION CODE $=$ Includes the operation code that you need to perform.
DATA FIELD $\quad=\quad$ Includes the data field.
ERROR CHECK = Field for the error correction code.
END OF FRAME = End message marker.
Communication frame structure:

Mode RTU

Bit per byte $\quad=\quad$ mode a) 1 Start, 8 Bit, 1 Parity, 1 Stop mode b) 1 Start, 8 Bit, 2 Stop

START OF FRAME $=$ silence on line for time $>=4$ characters
ADDRES FIELD = 1 character
FUNCTION CODE $=1$ character
DATA FIELD $=\mathrm{N}$ characters
ERROR CHECK = 16 bit CRC
END OF FRAME $=$ silence on line for time $>=4$ characters
The wait time for response is $30-50$ msecond.

CRC GENERATION

Example of the CRC-16 generation with " C " language: static unsigned char auchCRCHi [] = \{
0×0 \};
static unsigned char auchCRCLo [] = \{
$0 \times 00,0 x C 0,0 x C 1,0 x 01,0 x C 3,0 x 03,0 x 02,0 x C 2,0 x C 6,0 x 06,0 x 07,0 x C 7,0 x 05,0 x C 5,0 x C 4,0 x 04$, $0 x C C, 0 x 0 C, 0 x 0 D, 0 x C D, 0 x 0 F, 0 x C F, 0 x C E, 0 x 0 E, 0 x 0 A, 0 x C A, 0 x C B, 0 x 0 B, 0 x C 9,0 x 09,0 x 08,0 x C 8$, $0 x D 8, ~ 0 x 18, ~ 0 x 19, ~ 0 x D 9, ~ 0 x 1 B, ~ 0 x D B, ~ 0 x D A, ~ 0 x 1 A, ~ 0 x 1 E, ~ 0 x D E, ~ 0 x D F, ~ 0 x 1 F, ~ 0 x D D, ~ 0 x 1 D, ~ 0 x 1 C, ~ 0 x D C, ~$ $0 x 14,0 x D 4,0 x D 5,0 x 15,0 x D 7,0 x 17,0 x 16,0 x D 6,0 x D 2,0 x 12,0 x 13,0 x D 3,0 x 11,0 x D 1,0 x D 0,0 x 10$, $0 \times F 0,0 \times 30,0 \times 31, \quad 0 \times F 1,0 \times 33,0 \times F 3,0 \times F 2,0 \times 32,0 \times 36,0 \times F 6,0 \times F 7,0 \times 37,0 \times F 5,0 \times 35,0 \times 34,0 \times F 4$, $0 \times 3 C, 0 x F C, 0 x F D, 0 x 3 D, 0 x F F, 0 x 3 F, 0 x 3 E, 0 x F E, 0 x F A, 0 x 3 A, 0 \times 3 B, 0 x F B, 0 x 39,0 x F 9,0 x F 8,0 x 38$, $0 x 28, ~ 0 x E 8, ~ 0 x E 9, ~ 0 x 29, ~ 0 x E B, ~ 0 x 2 B, ~ 0 x 2 A ~ 0 x E A, ~ 0 x E E, ~ 0 x 2 E, ~ 0 x 2 F, ~ 0 x E F, ~ 0 x 2 D, ~ 0 x E D, ~ 0 x E C, ~ 0 X 2 C, ~, ~$ $0 x E 4, ~ 0 x 24, ~ 0 x 25, ~ 0 x E 5, ~ 0 x 27, ~ 0 x E 7, ~ 0 x E 6, ~ 0 x 26, ~ 0 x 22, ~ 0 x E 2, ~ 0 x E 3, ~ 0 x 23, ~ 0 x E 1, ~ 0 x 21, ~ 0 x 20, ~ 0 x E 0, ~$ $0 x A 0, ~ 0 x 60, ~ 0 x 61, ~ 0 x A 1, ~ 0 x 63, ~ 0 x A 3, ~ 0 x A 2, ~ 0 x 62, ~ 0 x 66, ~ 0 x A 6, ~ 0 x A 7, ~ 0 x 67, ~ 0 x A 5, ~ 0 x 65, ~ 0 x 64, ~ 0 x A 4, ~$ $0 \times 6 \mathrm{C}, 0 \times \mathrm{AC}, 0 \times \mathrm{AD}, 0 \times 6 \mathrm{D}, 0 \times \mathrm{AF}, 0 \times 6 \mathrm{~F}, 0 \times 6 \mathrm{E}, 0 \times \mathrm{AE}, 0 \times \mathrm{AA}, 0 \times 6 \mathrm{~A}, 0 \times 6 \mathrm{~B}, 0 \times \mathrm{AB}, 0 \times 69,0 \times \mathrm{A}, 0 \times 18,0 \times 68$, $0 x 78,0 x B 8,0 x B 9,0 x 79,0 x B B, 0 x 7 B, 0 x 7 \mathrm{~A}, 0 x \mathrm{BA}, 0 x \mathrm{BE}, 0 x 7 \mathrm{E}, 0 \times 7 \mathrm{~F}, 0 x \mathrm{BF}, 0 x 7 \mathrm{D}, 0 x \mathrm{BD}, 0 x \mathrm{BC}, 0 x 7 \mathrm{C}$, $0 x B 4,0 x 74,0 x 75,0 x B 5,0 x 77,0 x B 7,0 x B 6,0 x 76,0 x 72,0 x B 2,0 x B 3,0 x 73,0 x B 1,0 x 71,0 x 70,0 x B 0$, $0 \times 50, \quad 0 \times 90, \quad 0 \times 91, \quad 0 \times 51,0 \times 93,0 \times 53,0 \times 52,0 \times 92,0 \times 96,0 \times 56,0 \times 57,0 \times 97,0 \times 55,0 \times 95,0 \times 94,0 \times 54$, $0 \times 9 \mathrm{C}, 0 \times 5 \mathrm{C}, 0 \times 5 \mathrm{D}, 0 \times 9 \mathrm{D}, 0 \times 5 \mathrm{~F}, 0 \times 9 \mathrm{~F}, 0 \times 9 \mathrm{E}, 0 \times 5 \mathrm{E}, 0 \times 5 \mathrm{~A}, 0 \times 9 \mathrm{~A}, 0 \times 9 \mathrm{~B}, 0 \times 5 \mathrm{~B}, 0 \times 99,0 \times 59,0 \times 58,0 \times 98$, $0 x 88, ~ 0 x 48, ~ 0 x 49, ~ 0 x 89, ~ 0 x 4 B, ~ 0 x 8 B, ~ 0 x 8 A, ~ 0 x 4 A, ~ 0 x 4 E, ~ 0 x 8 E, ~ 0 x 8 F, ~ 0 x 4 F, ~ 0 x 8 D, ~ 0 x 4 D, ~ 0 x 4 C, ~ 0 x 8 C, ~$ $0 \times 44,0 \times 84,0 \times 85,0 \times 45,0 \times 87,0 \times 47,0 \times 46,0 \times 86,0 \times 82,0 \times 42,0 \times 43,0 \times 83,0 \times 41,0 \times 81,0 \times 80,0 \times 40$ \}
unsigned short CRC16 (ptMsg, usDataLen)
unsigned char *ptMsg;
unsigned short usDataLen;
\{

```
    unsigned char uchCRCHi =0xFF; / * CRC high byte */
    unsigned char uchCRCLo =0xFF; / * CRC low byte * /
    unsigned ulndex;
    / * pass through message buffer * /
    while (usDataLen--)
    {
        ulndex = uchCRCHi ^ *ptMsg++; I.* calculate the CRC */
```

 / * message to calculate CRC upon */
 / * number of bytes in message * /
 uchCRCHi = uchCRCLo \({ }^{\wedge}\) auchCRCHi [ulndex] ;
 uchCRCLo = auchCRCLo [ulndex]
 \}
 return (uchCRCHi «8। uchCRCLo) ;
 \}

Note: The"Error Check (CRC)" field must be computed reffering to the characters from the first of ADDR to the last of DATA inclusive.

2.2) READING OF THE REGISTERS (Function Code \$ 03)

Reads the binary contents of holding registers (4 X references) in the slave.
Broadcast is not supported.
The Query message specified the starting register and quantity of register to be read.

QUERY:

$\begin{gathered} \text { START } \\ \text { OF } \\ \text { FRAME } \end{gathered}$	ADDRESS FIELD	FUNCTION CODE	START ADDRESS	No. OF REGISTERS	ERROR CHECK	

START OF FRAME $=$ Starting message marker.
ADDRESS FIELD = EMA device address (00...FF HEX) (1 byte).
FUNCTION CODE = Operation code (03 HEX) (1 byte).
START ADDRESS = First register address to be read (2 byte).
No.OF REGISTERS $=$ Number of registers ($\max 126$) to be read (4 byte or 2 byte for 1 IEEE meas value).
ERROR CHECK = Check sum.
END OF FRAME = End message marker.

WARNING:

It is possible to read more than one variable at the same time only if their addresses are consecutive and the variables on the same line cannot be divided.
The register data in the response message are packet as two bytes per register, with the binary contents right justified within each byte.
For each register,the first byte contains the high order bits and the second contains the low order bits.
RESPONSE:

$\begin{gathered} \text { START } \\ \text { OF } \\ \text { FRAME } \end{gathered}$	ADDRESS FIELD	FUNCTION CODE	No. OF BYTES	D0, D1, ..., Dn	ERROR CHECK	

START OF FRAME $=$ Starting message marker.
ADDRESS FIELD = UPM device address (00...FF HEX) (1 byte).
FUNCTION CODE $=$ Operation code (03 HEX) (1 Byte).
No.OF SEND BYTES $=$ Number of data bytes ($00 . .$. ?? HEX) (1 byte). 1 register requires 2 data bytes.
D0, D1, .., Dn = data bytes ($00 \ldots$? ? HEX) (Nr. of register $\times 2=n$. byte).
ERROR CHECK = Check sum.
END OF FRAME = End message marker.
See the TABLE OF EMA REGISTERS to the sect. 5 and see the EXAMPLE to the sect. 6:

IEE STANDARD FLOATING POINT

The basic format allows a IEEE standard floating-point number to be representing in single-32 bit format as:

$$
\mathrm{N} . \mathrm{n}=(-1)^{\mathrm{S}} 2^{\mathrm{e}^{\prime}-127}(1 . f)
$$

where S is the sign bit,e' is the biased exponent,and f is the fraction strored normalized without the leaning 1.
Internally the exponent is 8 bits in length and the stored fraction is 23 bits long.
The floating-point formats is presented in the follow:
bit number

S	$\mathrm{e}+127$		f	
31	30	23	22	0

IEEE Standard Floating-Point Single Precision Notation
Length in bits:

Sign	1
Exponent	8
Fraction	$23+(1)$
Total	$\mathrm{m}=32+(1)$

Exponent (e):

Max	255
Min	0
Bias	127

Note:Fractions are always normalized and the leading 1 (hidden bit) is not stored.
The IEEE standard floating-point register is start to \$ 2000.
See the TABLE OF EMA REGISTERS to the sect.5:

2.3) SETUP OF THE EMA PARAMETERS (Function Code \$ 10)

Presets values into a sequence of holding registers (4 X references).
When broadcast, the function presets the same register references in all attached slaves.
NOTE: The function will override the controller's memory protect state. The preset values will remain valid in the registers until the controller's logic next solves the register contents. The register values will remain if they are not programmed in the controller's logic.

The query message specified the register reference to be preset.Registers are addressed starting at zero:register 1 is addressed as 0 .

WARNING: It is possible to write more than one variable at the same time only if their addresses are consecutive and the variables on the same line cannot be divided.

QUERY:

$\begin{aligned} & \text { START } \\ & \text { OF } \\ & \text { FRAME } \end{aligned}$	ADDRESS FIELD	FUNCTION CODE	START ADDRESS	No. OF REGISTERS	No. OF BYTES	D0, D1, ..., Dn	ERROR CHECK	$\begin{gathered} \text { END } \\ \text { OF } \\ \text { FRAME } \end{gathered}$

START OF FRAME = Starting message marker.
$\begin{array}{lll}\text { ADDRESS FIELD } & =\text { EMA device address (00...FF HEX) } & \text { (} 1 \text { byte). } \\ \text { FUNCTION CODE } & =\text { Operation code (} 10 \text { HEX) }\end{array}$
START ADDRESS = First register address to be written (2 byte).
No. OF REGISTER $=\quad$ Number of registers to be written (1,2,3,4,...) (2 byte).
No. OF BYTES $=$ Number of data bytes (HEX) (1 byte): 1register requires 2
D0,D1,..,Dn = Data bytes (00...? HEX)
data bytes.
(1 byte) (Nr. of register x $2=\mathrm{n}$. byte).

ERROR CHECK = Check sum.
END OF FRAME = End message marker.
The normal response retums the slave address, function code,starting address and quantity of register preset.

RESPONSE:

START OF FRAME	ADDRESS FIELD	FUNCTION CODE	START ADDRESS	No. OF REGISTERS	ERROR CHECK	END OF FRAME

START OF FRAME = Starting message marker.
ADDRESS FIELD = EMA device address (00...FF HEX) (1 byte)
FUNCTION CODE = Operation code (10 HEX) (1 byte).
START ADDRESS = First register address to be written (2 byte).
No. OF REGISTER $=$ Number of registers to be written (2 byte).
ERROR CHECK $=$ Check sum.
END OF FRAME = End message marker.
See the TABLE OF EMA REGISTERS to the sect. 5 and see the EXAMPLE to the sect. 6 :

2.4) ERROR MESSAGE FROM SLAVE TO MASTER

When a slave device receives a not valid query, it does transmit an error message.

RESPONSE:

$\begin{gathered} \text { START } \\ \text { OF } \\ \text { FRAME } \end{gathered}$	ADDRESS FIELD	FUNCTION CODE	ERROR CODE	ERROR CHECK	$\begin{gathered} \text { END } \\ \text { OF } \\ \text { FRAME } \end{gathered}$

| START OF FRAME | $=$ Starting message marker. | |
| :--- | :--- | :--- | :--- |
| ADDRESS FIELD | $=$ EMA device address ($00 \ldots$ FF HEX) | (1 byte). |
| FUNCTION CODE | $=$ Operation code with bit 7 high | (1 byte). |
| ERROR CODE | $=$ Message containing communication failure | (1 byte). |
| ERROR CHECK | $=$ Check sum. | |
| END OF FRAME | $=$ End message marker. | |

ERROR EXAMPLE			
QUERY		RESPONSE	
Field Name	Example (Hex)		Field Name

2.5) DIAGNOSTIC (Function Code \$ 08)

This function provides a test for checking the communication system.
Broadcast is not supported.
The instrument's protocol has only the sub-function 0 of the diagnostics sub-functions set of the standard modbus protocol.
The Query and the Response messages are the following:

QUERY:

START OF FRAME	ADDRESS FIELD	FUNCTION CODE	SUB FUNCTION	DATA	ERROR CHECK	END FRAME

START OF FRAME = Starting message marker.
ADDRESS FIELD = EMA device address (00...FF HEX) (1 byte).
FUNCTION CODE = Operation code (08 HEX) (1 byte).
SUB FUNCTION = Sub-function 0 (00 00 hex) (2 byte).
DATA $=$ Two bytes data to choose (2 byte).
ERROR CHECK = Check sum.
END OF FRAME = End message marker.

RESPONSE:

The response must be the loopback of the same data.

START OF FRAME	ADDRESS FIELD	FUNCTION CODE	SUB FUNCTION	DATA	ERROR CHECK	END OF FRAME

| START OF FRAME | $=$ Starting message marker. | |
| :--- | :--- | :--- | :--- |
| ADDRESS FIELD | $=$ EMA device address (00...FF HEX) | (1 byte). |
| FUNCTION CODE | $=$ Operation code $(08$ HEX) | (1 byte). |
| SUB FUNCTION | $=$ Sub-function $0(0000$ hex) | (2 byte). |
| DATA | $=$ A two bytes data | |
| ERROR CHECK | $=$ Check sum. | |
| END OF FRAME | $=$ End message marker. | |

DIAGNOSTIC EXAMPLE				
QUERY		RESPONSE		
	Example (Hex)		Field Name	Example (Hex)
Field Name	01		Slave Address	01
Slave Address	08	Function Code	08	
Function Code	00	Sub-function Hi	00	
Sub-function Hi	00	Sub-function Lo	00	
Sub-function Lo	F1	Data Hi	F1	
Data Hi	A7	Data Lo	A7	
Data Lo	$? ?$	Error Check (CRC)	$? ?$	
Error Check (CRC)	$? ?$		$? ?$	
			$?$	

2.6) REPORT SLAVE ID (Function Code \$ 11)

This function returns the type of the instrument and the current status of the slave run indicator. Broadcast is not supported.
The Query and the Reponse messages are the following:

QUERY:

START	ADDRESS	FUNCTION	ERROR	END
OF				
FRAME	FIELD	CODE	CHECK	OF
FRAME				

START OF FRAME $=$ Starting message marker.
ADDRESS FIELD = EMA device address (00...FF HEX) (1 byte).
FUNCTION CODE = Operation code (11 HEX) (1 byte).
ERROR CHECK = Check sum.
END OF FRAME = End message marker.
位 (

RESPONSE:
The normal response has the slave ID identifier (53 HEX) and the run indicator status (FF HEX).

$\begin{gathered} \text { START } \\ \text { OF } \\ \text { FRAME } \end{gathered}$	ADDRESS FIELD	$\begin{aligned} & \text { FUNCTION } \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \text { BYTE } \\ & \text { COUNT } \end{aligned}$	$\begin{aligned} & \text { SLAVE } \\ & \text { ID } \end{aligned}$	RUN INDICATOR STATUS	ERROR CHECK	$\begin{gathered} \text { END } \\ \text { OF } \\ \text { FRAME } \end{gathered}$

START OF FRAME	$=$	Starting message marker.	
ADDRESS FIELD	$=$	EMA device address (00...FF HEX)	(1 byte).
FUNCTION CODE	$=$ Operation code (11 HEX)	$(1$ byte).	
BYTE COUNT	$=$ Number of data bytes (02 HEX)	$(1$ byte).	
SLAVE ID	$=$ Slave ID identifier (53 HEX)	$(1$ byte).	
RUN INDICATOR STATUS	$=$ Run indicator status (FF HEX)	(1 byte).	
ERROR CHECK	$=$ Check sum.		
END OF FRAME	$=$ End message marker.		

REPORT SLAVE ID EXAMPLE			
QUERY		RESPONSE	
Field Name	Example (Hex)	Field Name	Example (Hex)
Slave Address	01	Slave Address	01
Function Code	11	Function Code	11
Error Check (CRC)	??	Byte count	02
	??	Slave ID	53
		Run indicator status	FF
		Error Check (CRC)	??

2.7) TABLE OF EMA REGISTERS

The following table shown all the EMA registers.
The M.U. and Type columns are referred to integer register (first column).

MEASURED VALUES (Function code \$ 03)

Integer		Float (IEEE)		Description	M.U.	Type
Register HEX	Word	Register HEX	Word			
\$1000	4	\$2000	2	3-PHASE SYSTEM VOLTAGE	[mV]	(Uns.) MSB=0
\$1004	4	\$2002	2	PHASE VOLTAGE $\mathrm{L}_{1-\mathrm{N}}$	[mV]	(Unsigned)
\$1008	4	\$2004	2	PHASE VOLTAGE L- ${ }^{\text {- }}$	[mV]	(Unsigned)
\$100C	4	\$2006	2	PHASE VOLTAGE L3-N	[mV]	(Unsigned)
\$1010	4	\$2008	2	LINE VOLTAGE L L_{1-2}	[mV]	(Unsigned)
\$1014	4	\$200A	2	LINE VOLTAGE L2-3	[mV]	(Unsigned)
\$1018	4	\$200C	2	LINE VOLTAGE L3-1	[mV]	(Unsigned)
\$101C	4	\$200E	2	3-PHASE SYSTEM CURRENT	[mA]	(Signed) MSB=1
\$1020	4	\$2010	2	LINE CURRENT L_{1}	[mA]	(Signed)
\$1024	4	\$2012	2	LINE CURRENT L_{2}	[mA]	(Signed)
\$1028	4	\$2014	2	LINE CURRENT L ${ }_{3}$	[mA]	(Signed)
\$102C	4	\$2016	2	3-PHASE SYS. POWER FACTOR	[-]	(Signed)
\$1030	4	\$2018	2	POWER FACTOR L1	[-]	(Signed)
\$1034	4	\$201A	2	POWER FACTOR L_{2}	[-]	(Signed)
\$1038	4	\$201C	2	POWER FACTOR L_{3}	[-]	(Signed)
\$103C	4	\$201E	2	3-PHASE SYSTEM COS \varnothing	[-]	(Signed)
\$1040	4	\$2020	2	PHASE $\mathrm{COS}_{1}{ }_{1}$	[-]	(Signed)
\$1044	4	\$2022	2	PHASE COS_{2}	[-]	(Signed)
\$1048	4	\$2024	2	PHASE COS_{3}	[-]	(Signed)
\$104C	4	\$2026	2	3-PHASE S. APPARENT POWER	[mVA]	(Signed)
\$1050	4	\$2028	2	APPARENT POWER L 1	[mVA]	(Signed)
\$1054	4	\$202A	2	APPARENT POWER L2	[mVA]	(Signed)
\$1058	4	\$202C	2	APPARENT POWER L ${ }_{3}$	[mVA]	(Signed)
\$105C	4	\$202E	2	3-PHASE SYS. ACTIVE POWER	[mW]	(Signed)
\$1060	4	\$2030	2	ACTIVE POWER L1	[mW]	(Signed)
\$1064	4	\$2032	2	ACTIVE POWER L2	[mW]	(Signed)
\$1068	4	\$2034	2	ACTIVE POWER L3	[mW]	(Signed)
\$106C	4	\$2036	2	3-PHASE S. REACTIVE POWER	[mVAR]	(Signed)
\$1070	4	\$2038	2	REACTIVE POWER L_{1}	[mVAR]	(Signed)
\$1074	4	\$203A	2	REACTIVE POWER L_{2}	[mVAR]	(Signed)
\$1078	4	\$203C	2	REACTIVE POWER L3	[mVAR]	(Signed)
\$107C	4	\$203E	2	3-PHASE SYS. ACTIVE ENERGY+	[Wh]	(Unsigned)
\$1080	4	\$2040	2	3-PHASE S. REACTIVE ENERGY+	[VARh]	(Unsigned)
\$1084	4	\$2042	2	3-PHASE SYS.ACTIVE EN.	[Wh]	(Unsigned)
\$1088	4	\$2044	2	3-PHASE SYS.REACT.EN.	[VARh]	(Unsigned)
\$108C	4	\$2046	2	FREQUENCY	[mHz]	(Unsigned)
\$1090	4	\$2048	2	THD VOLTAGE L1	[m\%]	(Unsigned)
\$1094	4	\$204A	2	THD VOLTAGE L2	[m\%]	(Unsigned)
\$1098	4	\$204C	2	THD VOLTAGE L_{3}	[m\%]	(Unsigned)
\$109C	4	\$204E	2	THD CURRENT L_{1}	[m\%]	(Unsigned)
\$10A0	4	\$2050	2	THD CURRENT L2	[m\%]	(Unsigned)
\$10A4	4	\$2052	2	THD CURRENT L_{3}	[m\%]	(Unsigned)
\$10A8	4	\$2054	2	3-PHASE AVG. ACTIVE POWER	[mW]	(Unsigned)
\$10AC	4	\$2056	2	3-PHASE AVERAGE CURRENT	[mA]	(Unsigned)
\$11C0	4	\$2068	2	TEMPERATURE	[$\left.\mathrm{m}^{\circ} \mathrm{C}\right]$	(Signed)
\$11C4	4	\$2A3A	2	NEUTRAL CURRENT	[mA]	(Signed)
\$11C8	4	\$2A3C	2	3 PHASE AVG. REACTIVE POWER	[mVAR]	(Signed)
\$11CC	4	\$2A40	2	AVERAGE LINE CURRENT L_{1}	[mA]	(Signed)
\$11D0	4	\$2A42	2	AVERAGE LINE CURRENT L_{2}	[mA]	(Signed)
\$11D4	4	\$2A44	2	AVERAGE LINE CURRENT L ${ }^{\text {a }}$	[mA]	(Signed)
\$11D8	4	\$2A46	2	MAX AVERAGE 3-PH. CURRENT	[mA]	(Signed)
\$11DC	4	\$2A48	2	MAX AVERAGE LINE CURRENT L_{1}	[mA]	(Signed)
\$11E0	4	\$2A4A	2	MAX AVERAGE LINE CURRENT L2	[mA]	(Signed)
\$11E4	4	\$2A4C	2	MAX AVERAGE LINE CURRENT L3	[mA]	(Signed)
\$11E8	4	\$2A4E	2	MAX AVG NEUTRAL CURRENT L_{N}	[mA]	(Signed)
\$11EC	4	\$2A3E	2	AVERAGE NEUTRAL CURRENT Ln	[mA]	(Signed)
\$11F0	4	\$206A	2	VOLTAGE UNBALANCE	[m\%]	(Unsigned)
\$11F4	4	\$206C	2	CURRENT UNBALANCE	[m\%]	(Unsigned)

NOTE: WHEN THE INSTRUMENT CAN'T MEASURE IT SEND 0000 AS VALUE.

MIN/MAX VALUES (Function code \$ 03)

Integer		Float (IEEE)		Description	M.U.	Type
Register HEX	Word	Register HEX	Word			
\$10B0	3	\$20B0	3	YY MM DD	[-]	(Unsigned)
\$10B3	3	\$20B3	3	HH MM SS	[-]	(Unsigned)
\$10B6	4	\$20B6	2	MIN 3-PHASE SYSTEM VOLTAGE	[mV]	(Unsigned)
\$10BA	3	\$20B8	3	YY MM DD	[-]	(Unsigned)
\$10BD	3	\$20BB	3	HH MM SS	[-]	(Unsigned)
\$10C0	4	\$20BE	2	MAX 3-PHASE SYSTEM VOLTAGE	[mV]	(Unsigned)
\$10C4	3	\$20C0	3	YY MM DD	[-]	(Unsigned)
\$10C7	3	\$20C3	3	HH MM SS	[-]	(Unsigned)
\$10CA	4	\$20C6	2	MIN 1-PHASE VOLTAGE L1-N	[mV]	(Unsigned)
\$10CE	3	\$20C8	3	YY MM DD	$[-]$	(Unsigned)
\$10D1	3	\$20CB	3	HH MM SS	[-]	(Unsigned)
\$10D4	4	\$20CE	2	MAX 1-PHASE VOLTAGE Li-N	[mV]	(Unsigned)
\$10D8	3	\$20D0	3	YY MM DD	[-]	(Unsigned)
\$10DB	3	\$20D3	3	HH MM SS	[-]	(Unsigned)
\$10DE	4	\$20D6	2	MIN 1-PHASE VOLTAGE L2-N	[mV]	(Unsigned)
\$10E2	3	\$20D8	3	YY MM DD	[-]	(Unsigned)
\$10E5	3	\$20DB	3	HH MM SS	[-]	(Unsigned)
\$10E8	4	\$20DE	2	MAX 1-PHASE VOLTAGE L $\mathrm{L}_{2} \mathrm{~N}$	[mV]	(Unsigned)
\$10EC	3	\$20E0	3	YY MM DD	$[-]$	(Unsigned)
\$10EF	3	\$20E3	3	HH MM SS	[-]	(Unsigned)
\$10F2	4	\$20E6	2	MINIMUN 1-PHASE VOLTAGE L_{3-N}	[mV]	(Unsigned)
\$10F6	3	\$20E8	3	YY MM DD	[-]	(Unsigned)
\$10F9	3	\$20EB	3	HH MM SS	[-]	(Unsigned)
\$10FC	4	\$20EE	2	MAXIMUM 1-PHASE VOLTAGE L3-N	[mV]	(Unsigned)
\$1100	3	\$20F0	3	YY MM DD	[-]	(Unsigned)
\$1103	3	\$20F3	3	HH MM SS	[-]	(Unsigned)
\$1106	4	\$20F6	2	MIN 3-PHASE SYSTEM CURRENT	[mA]	(Signed)
\$110A	3	\$20F8	3	YY MM DD	[-]	(Unsigned)
\$110D	3	\$20FB	3	HH MM SS	[-]	(Unsigned)
\$1110	4	\$20FE	2	MAX 3-PHASE SYSTEM CURRENT	[mA]	(Signed)
\$1114	3	\$2100	3	YY MM DD	[-]	(Unsigned)
\$1117	3	\$2103	3	HH MM SS	[-]	(Unsigned)
\$111A	4	\$2106	2	MINIMUN LINE CURRENT L_{1}	[mA]	(Signed)
\$111E	3	\$2108	3	YY MM DD	[-]	(Unsigned)
\$1121	3	\$210B	3	HH MM SS	[-]	(Unsigned)
\$1124	4	\$210E	2	MAXIMUM LINE CURRENT L ${ }_{1}$	[mA]	(Signed)
\$1128	3	\$2110	3	YY MM DD	[-]	(Unsigned)
\$112B	3	\$2113	3	HH MM SS	[-]	(Unsigned)
\$112E	4	\$2116	2	MINIMUN LINE CURRENT L2	[mA]	(Signed)
\$1132	3	\$2118	3	YY MM DD	[-]	(Unsigned)
\$1135	3	\$211B	3	HH MM SS	[-]	(Unsigned)
\$1138	4	\$211E	2	MAXIMUM LINE CURRENT L2	[mA]	(Signed)
\$113C	3	\$2120	3	YY MM DD	$[-]$	(Unsigned)
\$113F	3	\$2123	3	HH MM SS	$[-]$	(Unsigned)
\$1142	4	\$2126	2	MINIMUN LINE CURRENT L3	[mA]	(Signed)
\$1146	3	\$2128	3	YY MM DD	[-]	(Unsigned)
\$1149	3	\$212B	3	HH MM SS	[-]	(Unsigned)
\$114C	4	\$212E	2	MAXIMUM LINE CURRENT L_{3}	[mA]	(Signed)
\$1150	3	\$2130	3	YY MM DD	$[-]$	(Unsigned)
\$1153	3	\$2133	3	HH MM SS	[-]	(Unsigned)
\$1156	4	\$2136	2	MIN. 3 PHASE SYS. ACTIVE POWER	[mW]	(Signed)
\$115A	3	\$2138	3	YY MM DD	[-]	(Unsigned)
\$115D	3	\$213B	3	HH MM SS	[-]	(Unsigned)
\$1160	4	\$213E	2	MAX. 3 PHASE SYS.ACTIVE POWER	[mW]	(Signed)
\$1164	3	\$2140	3	YY MM DD	$[-]$	(Unsigned)
\$1167	3	\$2143	3	HH MM SS	[-]	(Unsigned)
\$116A	4	\$2146	2	MIN. 3 PHASE S.APPARENT POWER	[mVA]	(Signed)
\$116E	3	\$2148	3	YY MM DD	[-]	(Unsigned)
\$1171	3	\$214B	3	HH MM SS	[-]	(Unsigned)
\$1174	4	\$214E	2	MAX. 3 PHASE S.APPARENT POWER	[mVA]	(Signed)

\$1178	3	\$2150	3	YY MM DD	[-]	(Unsigned)
\$117B	3	\$2153	3	HH MM SS	[-]	(Unsigned)
\$117E	4	\$2156	2	MIN. 3 PHASE S..POWER FACTOR	[-]	(Signed)
\$1182	3	\$2158	3	YY MM DD	[-]	(Unsigned)
\$1185	3	\$215B	3	HH MM SS	[-]	(Unsigned)
\$1188	4	\$215E	2	MAX. 3 PHASE S..POWER FACTOR	[-]	(Signed)
\$118C	3	\$2160	3	YY MM DD	[-]	(Unsigned)
\$118F	3	\$2163	3	HH MM SS	[-]	(Unsigned)
\$1192	4	\$2166	2	MIN. 3 PHASE AVERAGE POWER	[mW]	(Unsigned)
\$1196	3	\$2168	3	YY MM DD	[-]	(Unsigned)
\$1199	3	\$216B	3	HH MM SS	[-]	(Unsigned)
\$119C	4	\$216E	2	MAX 3 PHASE AVERAGE POWER	[mW]	(Unsigned)

HARMONICS VALUES (Function code \$03)

Integer		Float (IEEE)		Description	M.U.	Type
Register HEX	Word	Register HEX	Word			
\$1200	4	\$2200	2	$1^{\text {ST }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1204	4	\$2202	2	$2^{\text {ND }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1208	4	\$2204	2	$3^{\text {RD }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$120C	4	\$2206	2	$4^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1210	4	\$2208	2	$5^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1214	4	\$220A	2	$6^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1218	4	\$220C	2	$7^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$121C	4	\$220E	2	$8^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1220	4	\$2210	2	$9^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1224	4	\$2212	2	$10^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1228	4	\$2214	2	$11^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$122C	4	\$2216	2	$12^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1230	4	\$2218	2	$13^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1234	4	\$221A	2	$14^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1238	4	\$221C	2	$15^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$123C	4	\$221E	2	$16^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1240	4	\$2220	2	$17^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1244	4	\$2222	2	$18^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1248	4	\$2224	2	$19^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$124C	4	\$2226	2	$20^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1250	4	\$2228	2	$21^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1254	4	\$222A	2	$22^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1258	4	\$222C	2	$23^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$125C	4	\$222E	2	$24^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1260	4	\$2230	2	$25^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1460	4	\$2400	2	$26^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1464	4	\$2402	2	$27^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1468	4	\$2404	2	$28^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$146C	4	\$2406	2	$29^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1470	4	\$2408	2	$30^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1474	4	\$240A	2	$31^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)

\$1264	4	\$2232	2	$1^{\text {ST }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1268	4	\$2234	2	$2^{\text {ND }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$126C	4	\$2236	2	$3^{\text {RD }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1270	4	\$2238	2	$4^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1274	4	\$223A	2	$5{ }^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }^{\text {d }}$ PHASE	[\%]	(Unsigned)
\$1278	4	\$223C	2	$6^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$127C	4	\$223E	2	$7^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{2} PHASE	[\%]	(Unsigned)
\$1280	4	\$2240	2	$8^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1284	4	\$2242	2	$9^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1288	4	\$2244	2	$10^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$128C	4	\$2246	2	$11^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1290	4	\$2248	2	$12^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1294	4	\$224A	2	$13^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1298	4	\$224C	2	$14^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$129C	4	\$224E	2	$15^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$12A0	4	\$2250	2	$16^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 ${ }^{\text {a }}$ PHASE	[\%]	(Unsigned)
\$12A4	4	\$2252	2	$17^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$12A8	4	\$2254	2	$18^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 ${ }^{\text {P }}$ PHASE	[\%]	(Unsigned)
\$12AC	4	\$2256	2	$19^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$12B0	4	\$2258	2	$20^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$12B4	4	\$225A	2	$21^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$12B8	4	\$225C	2	$22^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 ${ }^{\text {a }}$ PHASE	[\%]	(Unsigned)
\$12BC	4	\$225E	2	$23^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$12C0	4	\$2260	2	$24^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$12C4	4	\$2262	2	$25^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1478	4	\$240C	2	$26^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$147C	4	\$240E	2	$27^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1480	4	\$2410	2	$28^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1484	4	\$2412	2	$29^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1488	4	\$2414	2	$30^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$148C	4	\$2416	2	$31^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$12C8	4	\$2264	2	$1{ }^{\text {ST }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$12CC	4	\$2266	2	$2^{\text {ND }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$12D0	4	\$2268	2	$3^{\text {RD }}$ VOLTAGE HARMONIC OF THE L3 ${ }^{\text {PHASE }}$	[\%]	(Unsigned)
\$12D4	4	\$226A	2	$4^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$12D8	4	\$226C	2	$5^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$12DC	4	\$226E	2	$6{ }^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$12E0	4	\$2270	2	$7^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$12E4	4	\$2272	2	$8^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$12E8	4	\$2274	2	$9{ }^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$12EC	4	\$2276	2	$10^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$12F0	4	\$2278	2	$11^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$12F4	4	\$227A	2	$12^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$12F8	4	\$227C	2	$13^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$12FC	4	\$227E	2	$14^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1300	4	\$2280	2	$15^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1304	4	\$2282	2	$16^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1308	4	\$2284	2	$17^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$130C	4	\$2286	2	$18^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1310	4	\$2288	2	$19^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1314	4	\$228A	2	$20^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1318	4	\$228C	2	$21^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$131C	4	\$228E	2	$22^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1320	4	\$2290	2	$23^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1324	4	\$2292	2	$24^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1328	4	\$2294	2	$25^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1490	4	\$2418	2	$26^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1494	4	\$241A	2	$27^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1498	4	\$241C	2	$28^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$149C	4	\$241E	2	$29^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$14A0	4	\$2420	2	$30^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$14A4	4	\$2422	2	$31^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)

\$132C	4	\$2296	2	$1^{\text {ST }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1330	4	\$2298	2	$2^{\text {ND }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1334	4	\$229A	2	$3^{\text {RD }}$ CURRENT HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1338	4	\$229C	2	$4{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$133C	4	\$229E	2	$5{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1340	4	\$22A0	2	$6{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1344	4	\$22A2	2	$7{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1348	4	\$22A4	2	$8^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$134C	4	\$22A6	2	$9^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1350	4	\$22A8	2	$10^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1354	4	\$22AA	2	$11^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1358	4	\$22AC	2	$12^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$135C	4	\$22AE	2	$13^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1360	4	\$22B0	2	$14^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1364	4	\$22B2	2	$15^{\text {TH }}$ CURRENT HARMONIC OF THE L L_{1} PHASE	[\%]	(Unsigned)
\$1368	4	\$22B4	2	$16^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$136C	4	\$22B6	2	$17^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1370	4	\$22B8	2	$18^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1374	4	\$22BA	2	$19^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1378	4	\$22BC	2	$20^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$137C	4	\$22BE	2	$21^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1380	4	\$22C0	2	$22^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1384	4	\$22C2	2	$23^{\text {TH }}$ CURRENT HARMONIC OF THE L L_{1} PHASE	[\%]	(Unsigned)
\$1388	4	\$22C4	2	$24^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$138C	4	\$22C6	2	$25^{\text {TH }}$ CURRENT HARMONIC OF THE L L_{1} PHASE	[\%]	(Unsigned)
\$14A8	4	\$2424	2	$26^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$14AC	4	\$2426	2	$27^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$14B0	4	\$2428	2	$28^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$14B4	4	\$242A	2	$29^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$14B8	4	\$242C	2	$30^{\text {TH }}$ CURRENT HARMONIC OF THE L L_{1} PHASE	[\%]	(Unsigned)
\$14BC	4	\$242E	2	$31^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1390	4	\$22C8	2	$1^{\text {ST }}$ CURRENT HARMONIC OF THE L2 ${ }^{\text {PHASE }}$	[\%]	(Unsigned)
\$1394	4	\$22CA	2	$2^{\text {ND }}$ CURRENT HARMONIC OF THE L2 ${ }^{\text {P }}$ PHASE	[\%]	(Unsigned)
\$1398	4	\$22CC	2	$3^{\text {RD }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$139C	4	\$22CE	2	$4^{\text {TH }}$ CURRENT HARMONIC OF THE L2 ${ }^{\text {P }}$ PHASE	[\%]	(Unsigned)
\$13A0	4	\$22D0	2	$5{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$13A4	4	\$22D2	2	$6^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$13A8	4	\$22D4	2	$7^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$13AC	4	\$22D6	2	$8^{\text {TH }}$ CURRENT HARMONIC OF THE L2 ${ }^{\text {P }}$ PHASE	[\%]	(Unsigned)
\$13B0	4	\$22D8	2	$9{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$13B4	4	\$22DA	2	$10^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$13B8	4	\$22DC	2	$11^{\text {TH }}$ CURRENT HARMONIC OF THE L_{2} PHASE	[\%]	(Unsigned)
\$13BC	4	\$22DE	2	$12^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$13C0	4	\$22E0	2	$13^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$13C4	4	\$22E2	2	$14^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$13C8	4	\$22E4	2	$15^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$13CC	4	\$22E6	2	$16^{\text {TH }}$ CURRENT HARMONIC OF THE L_{2} PHASE	[\%]	(Unsigned)
\$13D0	4	\$22E8	2	$17^{\text {TH }}$ CURRENT HARMONIC OF THE L_{2} PHASE	[\%]	(Unsigned)
\$13D4	4	\$22EA	2	$18^{\text {TH }}$ CURRENT HARMONIC OF THE L_{2} PHASE	[\%]	(Unsigned)
\$13D8	4	\$22EC	2	$19^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$13DC	4	\$22EE	2	$20^{\text {TH }}$ CURRENT HARMONIC OF THE L_{2} PHASE	[\%]	(Unsigned)
\$13E0	4	\$22F0	2	$21^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$13E4	4	\$22F2	2	$22^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$13E8	4	\$22F4	2	$23^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$13EC	4	\$22F6	2	$24^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$13F0	4	\$22F8	2	$25^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$14C0	4	\$2430	2	$26^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$14C4	4	\$2432	2	$27^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$14C8	4	\$2434	2	$28^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$14CC	4	\$2436	2	$29^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$14D0	4	\$2438	2	$30^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$14D4	4	\$243A	2	$31^{\text {TH }}$ CURRENT HARMONIC OF THE L_{2} PHASE	[\%]	(Unsigned)

\$13F4	4	\$22FA	2	$1^{\text {ST }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$13F8	4	\$22FC	2	$2^{\text {ND }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$13FC	4	\$22FE	2	$3^{\text {RD }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$13F0	4	\$2300	2	$4{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1404	4	\$2302	2	$5^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1408	4	\$2304	2	$6{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$140C	4	\$2306	2	$7{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1410	4	\$2308	2	$8^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1414	4	\$230A	2	$9^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1418	4	\$230C	2	$10^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$141C	4	\$230E	2	$11^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1420	4	\$2310	2	$12^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1424	4	\$2312	2	$13^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1428	4	\$2314	2	$14^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$142C	4	\$2316	2	$15^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1430	4	\$2318	2	$16^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1434	4	\$231A	2	$17^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1438	4	\$231C	2	$18^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$143C	4	\$231E	2	$19^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1440	4	\$2320	2	$20^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1444	4	\$2322	2	$21^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1448	4	\$2324	2	$22^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$144C	4	\$2326	2	$23^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1450	4	\$2328	2	$24^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1454	4	\$232A	2	$25^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$14D8	4	\$243C	2	$26^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$14DC	4	\$243E	2	$27^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$14E0	4	\$2440	2	$28^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$14E4	4	\$2442	2	$29^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$14E8	4	\$2444	2	$30^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$14EC	4	\$2446	2	$31^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)

TIME BAND ENERGY COUNTER (FUNCTION CODE \$03)

Integer		Float (IEEE)		Description	M.U.	Type
$\begin{aligned} & \text { Register } \\ & \text { HEX } \end{aligned}$	Word	Register HEX	Word			
\$1500	4	\$2500	2	Acquired active energy previous month band 1	[Wh]	(Unsigned)
\$1504	4	\$2502	2	Inductive reactive energy previous month band 1	[VArh]	(Unsigned)
\$1508	4	\$2504	2	Transferred active energy previous month band 1	[Wh]	(Unsigned)
\$150C	4	\$2506	2	Capacitive reactive energy previous month band 1	[VArh]	(Unsigned)
\$1510	4	\$2508	2	Acquired active energy previous month band 2	[Wh]	(Unsigned)
\$1514	4	\$250A	2	Inductive reactive energy previous month band 2	[VArh]	(Unsigned)
\$1518	4	\$250C	2	Transferred active energy previous month band 2	[Wh]	(Unsigned)
\$151C	4	\$250E	2	Capacitive reactive energy previous month band 2	[VArh]	(Unsigned)
\$1520	4	\$2510	2	Acquired active energy previous month band 3	[Wh]	(Unsigned)
\$1524	4	\$2512	2	Inductive reactive energy previous month band 3	[VArh]	(Unsigned)
\$1528	4	\$2514	2	Transferred active energy previous month band 3	[Wh]	(Unsigned)
\$152C	4	\$2516	2	Capacitive reactive energy previous month band 3	[VArh]	(Unsigned)
\$15C0	4	\$2560	2	Acquired active energy previous month band 4	[Wh]	(Unsigned)
\$15C4	4	\$2562	2	Inductive reactive energy previous month band 4	[VArh]	(Unsigned)
\$15C8	4	\$2564	2	Transferred active energy previous month band 4	[Wh]	(Unsigned)
\$15CC	4	\$2566	2	Capacitive reactive energy previous month band 4	[VArh]	(Unsigned)
\$1530	4	\$2518	2	Acquired active energy current month band 1	[Wh]	(Unsigned)
\$1534	4	\$251A	2	Inductive reactive energy current month band 1	[VArh]	(Unsigned)
\$1538	4	\$251C	2	Transferred active energy current month band 1	[Wh]	(Unsigned)
\$153C	4	\$251E	2	Capacitive reactive energy current month band 1	[VArh]	(Unsigned)
\$1540	4	\$2520	2	Acquired active energy current month band 2	[Wh]	(Unsigned)
\$1544	4	\$2522	2	Inductive reactive energy current month band 2	[VArh]	(Unsigned)
\$1548	4	\$2524	2	Transferred active energy current month band 2	[Wh]	(Unsigned)
\$154C	4	\$2526	2	Capacitive reactive energy current month band 2	[VArh]	(Unsigned)
\$1550	4	\$2528	2	Acquired active energy current month band 3	[Wh]	(Unsigned)
\$1554	4	\$252A	2	Inductive reactive energy current month band 3	[VArh]	(Unsigned)
\$1558	4	\$252C	2	Transferred active energy current month band 3	[Wh]	(Unsigned)
\$155C	4	\$252E	2	Capacitive reactive energy current month band 3	[VArh]	(Unsigned)
\$15D0	4	\$2568	2	Acquired active energy current month band 4	[Wh]	(Unsigned)
\$15D4	4	\$256A	2	Inductive reactive energy current month band 4	[VArh]	(Unsigned)
\$15D8	4	\$256C	2	Transferred active energy current month band 4	[Wh]	(Unsigned)
\$15DC	4	\$256E	2	Capacitive reactive energy current month band 4	[VArh]	(Unsigned)

\$1560	4	\$2530	2	Acquired active energy previous day band 1	[Wh]	(Unsigned)
\$1564	4	\$2532	2	Inductive reactive energy previous day band 1	[VArh]	(Unsigned)
\$1568	4	\$2534	2	Transferred active energy previous day band 1	[Wh]	(Unsigned)
\$156C	4	\$2536	2	Capacitive reactive energy previous day band 1	[VArh]	(Unsigned)
\$1570	4	\$2538	2	Acquired active energy previous day band 2	[Wh]	(Unsigned)
\$1574	4	\$253A	2	Inductive reactive energy previous day band 2	[VArh]	(Unsigned)
\$1578	4	\$253C	2	Transferred active energy previous day band 2	[Wh]	(Unsigned)
\$157C	4	\$253E	2	Capacitive reactive energy previous day band 2	[VArh]	(Unsigned)
\$1580	4	\$2540	2	Acquired active energy previous day band 3	[Wh]	(Unsigned)
\$1584	4	\$2542	2	Inductive reactive energy previous day band 3	[VArh]	(Unsigned)
\$1588	4	\$2544	2	Transferred active energy previous day band 3	[Wh]	(Unsigned)
\$158C	4	\$2546	2	Capacitive reactive energy previous day band 3	[VArh]	(Unsigned)
\$15E0	4	\$2570	2	Acquired active energy previous day band 4	[Wh]	(Unsigned)
\$15E4	4	\$2572	2	Inductive reactive energy previous day band 4	[VArh]	(Unsigned)
\$15E8	4	\$2574	2	Transferred active energy previous day band 4	[Wh]	(Unsigned)
\$15EC	4	\$2576	2	Capacitive reactive energy previous day band 4	[VArh]	(Unsigned)
\$1590	4	\$2548	2	Acquired active energy current day band 1	[Wh]	(Unsigned)
\$1594	4	\$254A	2	Inductive reactive energy current day band 1	[VArh]	(Unsigned)
\$1598	4	\$254C	2	Transferred active energy current day band 1	[Wh]	(Unsigned)
\$159C	4	\$254E	2	Capacitive reactive energy current day band 1	[VArh]	(Unsigned)
\$15A0	4	\$2550	2	Acquired active energy current day band 2	[Wh]	(Unsigned)
\$15A4	4	\$2552	2	Inductive reactive energy current day band 2	[VArh]	(Unsigned)
\$15A8	4	\$2554	2	Transferred active energy current day band 2	[Wh]	(Unsigned)
\$15AC	4	\$2556	2	Capacitive reactive energy current day band 2	[VArh]	(Unsigned)
\$15B0	4	\$2558	2	Acquired active energy current day band 3	[Wh]	(Unsigned)

\$15B4	4	\$255A	2	Inductive reactive energy current day band 3	[VArh]	(Unsigned)
\$15B8	4	\$255C	2	Transferred active energy current day band 3	[Wh]	(Unsigned)
\$15BC	4	\$255E	2	Capacitive reactive energy current day band 3	[VArh]	(Unsigned)
\$15F0	4	\$2578	2	Acquired active energy current day band 4	[Wh]	(Unsigned)
\$15F4	4	\$257A	2	Inductive reactive energy current day band 4	[VArh]	(Unsigned)
\$15F8	4	\$257C	2	Transferred active energy current day band 4	[Wh]	(Unsigned)
\$15FC	4	\$257E	2	Capacitive reactive energy current day band 4	[VArh]	(Unsigned)
\$1F80	4	\$2FA0	2	Acquired active energy previous year band 1	[Wh]	(Unsigned)
\$1F84	4	\$2FA2	2	Inductive reactive energy previous year band 1	[VArh]	(Unsigned)
\$1F88	4	\$2FA4	2	Transferred active energy previous year band 1	[Wh]	(Unsigned)
\$1F8C	4	\$2FA6	2	Capacitive reactive energy previous year band 1	[VArh]	(Unsigned)
\$1F90	4	\$2FA8	2	Acquired active energy previous year band 2	[Wh]	(Unsigned)
\$1F94	4	\$2FAA	2	Inductive reactive energy previous year band 2	[VArh]	(Unsigned)
\$1F98	4	\$2FAC	2	Transferred active energy previous year band 2	[Wh]	(Unsigned)
\$1F9C	4	\$2FAE	2	Capacitive reactive energy previous year band 2	[VArh]	(Unsigned)
\$1FA0	4	\$2FB0	2	Acquired active energy previous year band 3	[Wh]	(Unsigned)
\$1FA4	4	\$2FB2	2	Inductive reactive energy previous year band 3	[VArh]	(Unsigned)
\$1FA8	4	\$2FB4	2	Transferred active energy previous year band 3	[Wh]	(Unsigned)
\$1FAC	4	\$2FB6	2	Capacitive reactive energy previous year band 3	[VArh]	(Unsigned)
\$1FB0	4	\$2FB8	2	Acquired active energy previous year band 4	[Wh]	(Unsigned)
\$1FB4	4	\$2FBA	2	Inductive reactive energy previous year band 4	[VArh]	(Unsigned)
\$1FB8	4	\$2FBC	2	Transferred active energy previous year band 4	[Wh]	(Unsigned)
\$1FBC	4	\$2FBE	2	Capacitive reactive energy previous year band 4	[VArh	(Unsigned)
\$1FC0	4	\$2FC0	2	Acquired active energy current year band 1	[Wh]	(Unsigned)
\$1FC4	4	\$2FC2	2	Inductive reactive energy current year band 1	[VArh]	(Unsigned)
\$1FC8	4	\$2FC4	2	Transferred active energy current year band 1	[Wh]	(Unsigned)
\$1FCC	4	\$2FC6	2	Capacitive reactive energy current year band 1	[VArh]	(Unsigned)
\$1FD0	4	\$2FC8	2	Acquired active energy current year band 2	[Wh]	(Unsigned)
\$1FD4	4	\$2FCA	2	Inductive reactive energy current year band 2	[VArh]	(Unsigned)
\$1FD8	4	\$2FCC	2	Transferred active energy current year band 2	[Wh]	(Unsigned)
\$1FDC	4	\$2FCE	2	Capacitive reactive energy current year band 2	[VArh]	(Unsigned)
\$1FE0	4	\$2FD0	2	Acquired active energy current year band 3	[Wh]	(Unsigned)
\$1FE4	4	\$2FD2	2	Inductive reactive energy current year band 3	[VArh]	(Unsigned)
\$1FE8	4	\$2FD4	2	Transferred active energy current year band 3	[Wh]	(Unsigned)
\$1FEC	4	\$2FD6	2	Capacitive reactive energy current year band 3	[VArh]	(Unsigned)
\$1FF0	4	\$2FD8	2	Acquired active energy current year band 4	[Wh]	(Unsigned)
\$1FF4	4	\$2FDA	2	Inductive reactive energy current year band 4	[VArh]	(Unsigned)
\$1FF8	4	\$2FDC	2	Transferred active energy current year band 4	[Wh]	(Unsigned)
\$1FFC	4	\$2FDE	2	Capacitive reactive energy current year band 4	[VArh]	(Unsigned)

TOTAL TIME BAND ENERGY COUNTER- Double format (Function code \$03)

N.A.	\$2A60	4	Total Acquired active energy band 1	[-]	(Unsigned)
N.A.	\$2A64	4	Total Transferred active energy band 1	[-]	(Unsigned)
N.A.	\$2A68	4	Total Inductive reactive energy band 1	[-]	(Unsigned)
N.A.	\$2A6C	4	Total Capacitive reactive energy band 1	[-]	(Unsigned)
N.A.	\$2A70	4	Total Acquired active energy band 2	[-]	(Unsigned)
N.A.	\$2A74	4	Total Transferred active energy band 2	[-]	(Unsigned)
N.A.	\$2A78	4	Total Inductive reactive energy band 2	[-]	(Unsigned)
N.A.	\$2A7C	4	Total Capacitive reactive energy band 2	[-]	(Unsigned)
N.A.	\$2A80	4	Total Acquired active energy band 3	[-]	(Unsigned)
N.A.	\$2A84	4	Total Transferred active energy band 3	[-]	(Unsigned)
N.A.	\$2A88	4	Total Inductive reactive energy band 3	[-]	(Unsigned)
N.A.	\$2A8C	4	Total Capacitive reactive energy band 3	[-]	(Unsigned)
N.A.	\$2A90	4	Total Acquired active energy band 4	[-]	(Unsigned)
N.A.	\$2A94	4	Total Transferred active energy band 4	[-]	(Unsigned)
N.A.	\$2A98	4	Total Inductive reactive energy band 4	[-]	(Unsigned)
N.A.	\$2A9C	4	Total Capacitive reactive energy band 4	[-]	(Unsigned)

VALUES STORED IN RAM (Function.code \$03)

Integer		Float (IEEE)		Description	M.U.	Type
Register HEX	Word	Register HEX	Word			
\$1600	1	\$2600	1	LOGICAL NUMBER	[-]	(Unsigned)
\$1601	3	\$2601	3	YYMMDD	[-]	(Unsigned)
\$1604	1	\$2604	1	$\mathrm{nn}=$ order no. of 15'energy value stored in a day	[-]	(Unsigned)
\$1605	4	\$2605	2	ACTIVE 15'	[mWh]	(Unsigned)
\$1609	4	\$2607	2	REACTIVE 15'	[mVArh]	(Unsigned)

MIN/MAX VALUES STORED IN RAM (Function.code \$03)
HEADER

Integer		Float (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1B30	3	\$2B30	3	YY MM DD	[-]	(Unsigned)
\$1B33	3	\$2B33	3	HH MM SS	[-]	(Unsigned)
\$1B36	1	\$2B36	1	time of mem	[min]	(Unsigned)

$1^{\text {st }}$ DATA BLOCK

Integer		Float (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1B47	4	\$2B47	4	Block num. (2 word) + \$0 (1 word) + Block full of $0=\mathrm{NO} / 1=$ Yes (1 word)		
\$1B4B	4	\$2B4B	2	MIN 3-PHASE SYSTEM VOLTAGE	[mV]	(Unsigned)
\$1B4F	4	\$2B4D	2	MAX 3-PHASE SYSTEM VOLTAGE	[mV]	(Unsigned)
\$1B53	4	\$2B4F	2	MIN PHASE VOLTAGE $L_{\text {l- }}$	[mV]	(Unsigned)
\$1B57	4	\$2B51	2	MAX PHASE VOLTAGE Li-N	[mV]	(Unsigned)
\$1B5B	4	\$2B53	2	MIN PHASE VOLTAGE L2-N	[mV]	(Unsigned)
\$1B5F	4	\$2B55	2	MAX PHASE VOLTAGE $\mathrm{L}_{2-\mathrm{N}}$	[mV]	(Unsigned)
\$1B63	4	\$2B57	2	MIN PHASE VOLTAGE L3-N	[mV]	(Unsigned)
\$1B67	4	\$2B59	2	MIN PHASE VOLTAGE $\mathrm{L}_{3-\mathrm{N}}$	[mV]	(Unsigned)
\$1B6B	4	\$2B5B	2	MIN 3-PHASE SYSTEM CURRENT	[mA]	(Signed)
\$1B6F	4	\$2B5D	2	MAX 3-PHASE SYSTEM CURRENT	[mA]	(Signed)
\$1B73	4	\$2B5F	2	MIN LINE CURRENT L_{1}	[mA]	(Signed)
\$1B77	4	\$2B61	2	MAX LINE CURRENT L_{1}	[mA]	(Signed)
\$1B7B	4	\$2B63	2	MIN LINE CURRENT L_{2}	[mA]	(Signed)
\$1B7F	4	\$2B65	2	MAX LINE CURRENT L2	[mA]	(Signed)
\$1B83	4	\$2B67	2	MIN LINE CURRENT L ${ }_{3}$	[mA]	(Signed)
\$1B87	4	\$2B69	2	MAX LINE CURRENT L ${ }_{3}$	[mA]	(Signed)
\$1B8B	4	\$2B6B	2	MIN 3 PHASE SYSTEM ACTIVE POWER	[mW]	(Signed)
\$1B8F	4	\$2B6D	2	MAX 3 PHASE SYSTEM ACTIVE POWER	[mW]	(Signed)
\$1B93	4	\$2B6F	2	MIN 3 PHASE SYSTEM REACTIVE POWER	[mW]	(Signed)
\$1B97	4	\$2B71	2	MAX 3 PHASE SYSTEM REACTIVE POWER	[mW]	(Signed)
\$1B9B	4	\$2B73	2	MIN 3 PHASE SYSTEM POWER FACTOR	[-]	(Signed)
\$1B9F	4	\$2B75	2	MAX 3 PHASE SYSTEM POWER FACTOR	[-]	(Signed)
\$1BA3	4	\$2B77	2	MIN 3 PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)
\$1BA7	4	\$2B79	2	MAX 3 PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)

Integer		Float (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1BAB	4	\$2B7B	4	Block num. (2 word) + \$0 (1 word) + Block full of $0=\mathrm{NO} / 1=$ Yes (1 word)		
\$1BAF	4	\$2B7F	2	MIN 3 PHASE SYSTEM VOLTAGE	[mV]	(Unsigned)
\$1BB3	4	\$2B81	2	MAX 3 PHASE SYSTEM VOLTAGE	[mV]	(Unsigned)
\$1BB7	4	\$2B83	2	MIN PHASE VOLTAGE $\mathrm{L}_{1-\mathrm{N}}$	[mV]	(Unsigned)
\$1BBB	4	\$2B85	2	MAX PHASE VOLTAGE Li-N	[mV]	(Unsigned)
\$1BBF	4	\$2B87	2	MIN PHASE VOLTAGE L2-N	[mV]	(Unsigned)
\$1BC3	4	\$2B89	2	MAX PHASE VOLTAGE $\mathrm{L}_{2-\mathrm{N}}$	[mV]	(Unsigned)
\$1BC7	4	\$2B8B	2	MIN PHASE VOLTAGE $L_{\text {L-N }}$	[mV]	(Unsigned)
\$1BCB	4	\$2B8D	2	MAX PHASE VOLTAGE $\mathrm{L}_{3-\mathrm{N}}$	[mV]	(Unsigned)
\$1BCF	4	\$2B8F	2	MIN 3-PHASE SYSTEM CURRENT	[mA]	(Signed)
\$1BD3	4	\$2B91	2	MAX 3-PHASE SYSTEM CURRENT	[mA]	(Signed)
\$1BD7	4	\$2B93	2	MIN LINE CURRENT L_{1}	[mA]	(Signed)
\$1BDB	4	\$2B95	2	MAX LINE CURRENT L_{1}	[mA]	(Signed)
\$1BDF	4	\$2B97	2	MIN LINE CURRENT L2	[mA]	(Signed)
\$1BE3	4	\$2B99	2	MAX LINE CURRENT L_{2}	[mA]	(Signed)
\$1BE7	4	\$2B9B	2	MIN LINE CURRENT L3	[mA]	(Signed)
\$1BEB	4	\$2B9D	2	MAX LINE CURRENT L3	[mA]	(Signed)
\$1BEF	4	\$2B9F	2	MIN 3-PHASE SYSTEM ACTIVE POWER	[mW]	(Signed)
\$1BF3	4	\$2BA1	2	MAX 3-PHASE SYSTEM ACTIVE POWER	[mW]	(Signed)
\$1BF7	4	\$2BA3	2	MIN 3-PHASE SYSTEM REACTIVE POWER	[mW]	(Signed)
\$1BFB	4	\$2BA5	2	MAX 3-PHASE SYSTEM REACTIVE POWER	[mW]	(Signed)
\$1BFF	4	\$2BA7	2	MIN 3-PHASE SYSTEM POWER FACTOR	[-]	(Signed)
\$1C03	4	\$2BA9	2	MAX 3-PHASE SYSTEM POWER FACTOR	[-]	(Signed)
\$1C07	4	\$2BAB	2	MIN 3-PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)
\$1C0B	4	\$2BAD	2	MAX 3-PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)

(3 ${ }^{\text {RD }}$ DATA BLOCK)

Integer		Float (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1C0F	4	\$2BAF	4	Block num.(2 word) + \$0 (1 word) + Block full of $0=\mathrm{NO} / 1=\mathrm{Yes}$ (1 word)		
.........	\ldots	\ldots
........	\ldots	\ldots
\$1C6F	4	\$2BE1	2	MAX 3-PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)

(4 ${ }^{\text {TH }}$ DATA BLOCK)

Integer		Float (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1C73	4	\$2BE3	4	$\begin{aligned} & \text { Block num. (2 word) + \$0 (} 1 \text { word })+ \text { Block full of } \\ & 0=\mathrm{NO} / 1=\text { Yes (} 1 \text { word) } \end{aligned}$		
....
	...		\ldots	..		
\$1CD3	4	\$2C15	2	MAX 3-PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)

($5^{\text {TH }}$ DATA BLOCK)

Integer		Float (IEEE)		Description	U.M.	Type
$\begin{gathered} \text { Register } \\ \text { HEX } \end{gathered}$	Word	Register HEX	Word			
\$1CD7	4	\$2C17	4	Block num.(2 word) + \$0 (1 word) + Block full of $0=\mathrm{NO} / 1=\mathrm{Yes}(1$ word)		
.........	\ldots	\ldots.	\ldots	
$\ldots \ldots . .$.	\ldots	$\ldots \ldots . .$.	\ldots		\ldots
\$1D37	4	\$2C49	2	MAX 3-PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)

($6^{\text {TH }}$ DATA BLOCK)

Integer		Float (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1D3B	4	\$2C4B	4	Block num.(2 word) + \$0 (1 word) + Block full of $0=\mathrm{NO} / 1=\mathrm{Yes}$ (1 word)		
.........	\ldots	\ldots
.........	\ldots
\$1D9B	4	\$2C7D	2	MAX 3-PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)

($7^{\text {TH }}$ DATA BLOCK)

Integer		Float (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1D9F	4	\$2C7F	4	Block num.(2 word) + \$0 (1 word) + Block full of $0=\mathrm{NO} / 1=\mathrm{Yes}(1$ word)		
........	\ldots	$\ldots \ldots .$.	\ldots	...	$\ldots . . .$.
.........	\ldots	
\$1DFF	4	\$2CB1	2	MAX 3-PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)

($8^{\text {TH }}$ DATA BLOCK)

Integer		Float (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1E03	4	\$2CB3	4	Block num.(2 word) + \$0 (1 word) + Block full of $0=\mathrm{NO} / 1=\mathrm{Yes}$ (1 word)		
.........	\ldots	\ldots.	\ldots
........	\ldots	$\ldots \ldots .$.	\ldots		\ldots
\$1E63	4	\$2CE5	2	MAX 3-PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)

($9^{\text {TH }}$ DATA BLOCK)

Integer		Float (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1E67	4	\$2CE7	4	Block num. (2 word) + \$0 (1 word) + Block full of $0=\mathrm{NO} / 1=\mathrm{Yes}$ (1 word)		
.........
		
\$1EC7	4	\$2D19	2	MAX 3-PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)

($10^{\text {TH }}$ DATA BLOCK)

Integer		Float (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1ECB	4	\$2D1B	4	Block num.(2 word) + \$0 (1 word) + Block full of $0=\mathrm{NO} / 1=\mathrm{Yes} \text { (} 1 \mathrm{word} \text {) }$		
.........
.........		\ldots
\$1F2B	4	\$2D4D	2	MAX 3-PHASE SYSTEM AVERAGE POWER	[mW]	(Signed)

HARMONICS VALUES STORED IN RAM (Function code \$03)

Integer		Float (IEEE)		Description	M.U.	Type
Register HEX	Word	Register HEX	Word			
\$1660	1	\$2660	1	LOGICAL NUMBER	[-]	(Unsigned)
\$1661	3	\$2661	3	YY MM DD	[-]	(Unsigned)
\$1664	1	\$2664	1	nn=order number of 15' in a day	[-]	(Unsigned)
\$1665	4	\$2665	2	$1{ }^{\text {ST }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1669	4	\$2667	2	$2^{\text {ND }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$166D	4	\$2669	2	$3^{\text {RD }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1671	4	\$266B	2	$4^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1675	4	\$266D	2	$5^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1679	4	\$266F	2	$6^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$167D	4	\$2671	2	$7^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1681	4	\$2673	2	$8^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1685	4	\$2675	2	$9^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1689	4	\$2677	2	$10^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$168D	4	\$2679	2	$11^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1691	4	\$267B	2	$12^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1695	4	\$267D	2	$13^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1699	4	\$267F	2	$14^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$169D	4	\$2681	2	$15^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$16A1	4	\$2683	2	$16^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$16A5	4	\$2685	2	$17^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$16A9	4	\$2687	2	$18^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$16AD	4	\$2689	2	$19^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$16B1	4	\$268B	2	$20^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$16B5	4	\$268D	2	$21^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$16B9	4	\$268F	2	$22^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$16BD	4	\$2691	2	$23^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$16C1	4	\$2693	2	$24^{\text {TH }}$ VOLTAGE HARMONIC OF THE L L_{1} PHASE	[\%]	(Unsigned)
\$16C5	4	\$2695	2	$25^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1900	4	\$2800	2	$26^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1904	4	\$2802	2	$27^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1908	4	\$2804	2	$28^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$190C	4	\$2806	2	$29^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1910	4	\$2808	2	$30^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$1914	4	\$280A	2	$31^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)

\$16C9	4	\$2697	2	$1^{\text {st }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$16CD	4	\$2699	2	$2^{\text {ND }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$16D1	4	\$269B	2	$3^{\text {RD }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$16D5	4	\$269D	2	$4^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$16D9	4	\$269F	2	$5^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$16DD	4	\$26A1	2	$6{ }^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$16E1	4	\$26A3	2	$7^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$16E5	4	\$26A5	2	$8^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{2} PHASE	[\%]	(Unsigned)
\$16E9	4	\$26A7	2	$9^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{2} PHASE	[\%]	(Unsigned)
\$16ED	4	\$26A9	2	$10^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$16F1	4	\$26AB	2	$11^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$16F5	4	\$26AD	2	$12^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 ${ }^{\text {2 }}$ PHASE	[\%]	(Unsigned)
\$16F9	4	\$26AF	2	$13^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$16FD	4	\$26B1	2	$14^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1701	4	\$26B3	2	$15^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1705	4	\$26B5	2	$16^{\text {TH }}$ VOLTAGE HARMONIC OF THE L L_{2} PHASE	[\%]	(Unsigned)
\$1709	4	\$26B7	2	$17^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$170D	4	\$26B9	2	$18^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1711	4	\$26BB	2	$19^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1715	4	\$26BD	2	$20^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1719	4	\$26BF	2	$21^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$171D	4	\$26C1	2	$22^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1721	4	\$26C3	2	$23^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1725	4	\$26C5	2	$24^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1729	4	\$26C7	2	$25^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 ${ }^{\text {2 }}$ PHASE	[\%]	(Unsigned)

\$1918	4	\$280C	2	$26^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$191C	4	\$280E	2	$27^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1920	4	\$2810	2	$28^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }^{\text {2 }}$ PHASE	[\%]	(Unsigned)
\$1924	4	\$2812	2	$29^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 ${ }^{\text {P }}$ PHASE	[\%]	(Unsigned)
\$1928	4	\$2814	2	$30^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$192C	4	\$2816	2	$31^{\text {TH }}$ VOLTAGE HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$172D	4	\$26C9	2	$1^{\text {ST }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1731	4	\$26CB	2	$2^{\text {ND }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1735	4	\$26CD	2	$3^{\text {RD }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1739	4	\$26CF	2	$4^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$173D	4	\$26D1	2	$5{ }^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1741	4	\$26D3	2	$6^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1745	4	\$26D5	2	$7^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1749	4	\$26D7	2	$8^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$174D	4	\$26D9	2	$9^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1751	4	\$26DB	2	$10^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1755	4	\$26DD	2	$11^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1759	4	\$26DF	2	$12^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$175D	4	\$26E1	2	$13^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1761	4	\$26E3	2	$14^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1765	4	\$26E5	2	$15^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1769	4	\$26E7	2	$16^{\text {TH }}$ VOLTAGE HARMONIC OF THE L3 ${ }^{\text {P }}$ PHASE	[\%]	(Unsigned)
\$176D	4	\$26E9	2	$17^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1771	4	\$26EB	2	$18^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1775	4	\$26ED	2	$19^{\text {TH }}$ VOLTAGE HARMONIC OF THE L3 ${ }^{\text {P }}$ PHASE	[\%]	(Unsigned)
\$1779	4	\$26EF	2	$20^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$177D	4	\$26F1	2	$21^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1781	4	\$26F3	2	$22^{\text {TH }}$ VOLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1785	4	\$26F5	2	$23^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1789	4	\$26F7	2	$24^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$178D	4	\$26F9	2	$25^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1930	4	\$2818	2	$26^{\text {TH }}$ OLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1934	4	\$281A	2	$27^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1938	4	\$281C	2	$28^{\text {TH }}$ OLTAGE HARMONIC OF THE L3 ${ }^{\text {P }}$ PHASE	[\%]	(Unsigned)
\$193C	4	\$281E	2	$29^{\text {TH }}$ OLTAGE HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1940	4	\$2820	2	$30^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1944	4	\$2822	2	$31^{\text {TH }}$ VOLTAGE HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)

\$1791	4	\$26FB	2	$1^{\text {ST }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1795	4	\$26FD	2	$2^{\text {ND }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1799	4	\$26FF	2	$3^{\text {RD }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$179D	4	\$2701	2	$4^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17A1	4	\$2703	2	$5{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17A5	4	\$2705	2	$6^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17A9	4	\$2707	2	$7{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17AD	4	\$2709	2	$8^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17B1	4	\$270B	2	$9^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17B5	4	\$270D	2	$10^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17B9	4	\$270F	2	$11^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17BD	4	\$2711	2	$12^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17C1	4	\$2713	2	$13^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17C5	4	\$2715	2	$14^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17C9	4	\$2717	2	$15^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17CD	4	\$2719	2	$16^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17D1	4	\$271B	2	$17^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17D5	4	\$271D	2	$18^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17D9	4	\$271F	2	$19^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17DD	4	\$2721	2	$20^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17E1	4	\$2723	2	$21^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17E5	4	\$2725	2	$22^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17E9	4	\$2727	2	$23^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17ED	4	\$2729	2	$24^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$17F1	4	\$272B	2	$25^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)

\$1948	4	\$2824	2	$26^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$194C	4	\$2826	2	$27^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1950	4	\$2828	2	$28^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1954	4	\$282A	2	$29^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$1958	4	\$282C	2	$30^{\text {TH }}$ CURRENT HARMONIC OF THE L_{1} PHASE	[\%]	(Unsigned)
\$195C	4	\$282E	2	$31^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{1}$ PHASE	[\%]	(Unsigned)
\$17F5	4	\$272D	2	$1^{\text {ST}}$ CURRENT HARMONIC OF THE L_{2} PHASE	[\%]	(Unsigned)
\$17F9	4	\$272F	2	$2^{\text {ND }}$ CURRENT HARMONIC OF THE L L_{2} PHASE	[\%]	(Unsigned)
\$17FD	4	\$2731	2	$3^{\text {RD }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1801	4	\$2733	2	$4^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1805	4	\$2735	2	$5{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1809	4	\$2737	2	$6{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L2 ${ }^{\text {P }}$ PHASE	[\%]	(Unsigned)
\$180D	4	\$2739	2	$7{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1811	4	\$273B	2	$8^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1815	4	\$273D	2	$9^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1819	4	\$273F	2	$10^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$181D	4	\$2741	2	$11^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1821	4	\$2743	2	$12^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1825	4	\$2745	2	$13^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1829	4	\$2747	2	$14^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$182D	4	\$2749	2	$15^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1831	4	\$274B	2	$16^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1835	4	\$274D	2	$17^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1839	4	\$274F	2	$18^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$183D	4	\$2751	2	$19^{\text {TH }}$ CURRENT HARMONIC OF THE L2 PHASE	[\%]	(Unsigned)
\$1841	4	\$2753	2	$20^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1845	4	\$2755	2	$21^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1849	4	\$2757	2	$22^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$184D	4	\$2759	2	$23^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1851	4	\$275B	2	$24^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1855	4	\$275D	2	$25^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1960	4	\$2830	2	$26^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1964	4	\$2832	2	$27^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1968	4	\$2834	2	$28^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$196C	4	\$2836	2	$29^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1970	4	\$2838	2	$30^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)
\$1974	4	\$283A	2	$31^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{2}$ PHASE	[\%]	(Unsigned)

\$1859	4	\$275F	2	$1^{\text {ST }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$185D	4	\$2761	2	$2^{\text {ND }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1861	4	\$2763	2	$3^{\text {RD }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1865	4	\$2765	2	$4^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1869	4	\$2767	2	$5{ }^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$186D	4	\$2769	2	$6^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1871	4	\$276B	2	$7^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1875	4	\$276D	2	$8^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1879	4	\$276F	2	$9^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }^{\text {a }}$ PHASE	[\%]	(Unsigned)
\$187D	4	\$2771	2	$10^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }^{\text {d }}$ PHASE	[\%]	(Unsigned)
\$1881	4	\$2773	2	$11^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1885	4	\$2775	2	$12^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1889	4	\$2777	2	$13^{\text {TH }}$ CURRENT HARMONIC OF THE L3 ${ }^{\text {H }}$ PHASE	[\%]	(Unsigned)
\$188D	4	\$2779	2	$14^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }^{\text {d }}$ PHASE	[\%]	(Unsigned)
\$1891	4	\$277B	2	$15^{\text {TH }}$ CURRENT HARMONIC OF THE L L_{3} PHASE	[\%]	(Unsigned)
\$1895	4	\$277D	2	$16^{\text {TH }}$ CURRENT HARMONIC OF THE L3 ${ }^{\text {d }}$ PHASE	[\%]	(Unsigned)
\$1899	4	\$277F	2	$17^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$189D	4	\$2781	2	$18^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$18A1	4	\$2783	2	$19^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$18A5	4	\$2785	2	$20^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$18A9	4	\$2787	2	$21^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$18AD	4	\$2789	2	$22^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$18B1	4	\$278B	2	$23^{\text {TH }}$ CURRENT HARMONIC OF THE L3 ${ }^{\text {H }}$ PHASE	[\%]	(Unsigned)
\$18B5	4	\$278D	2	$24^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$18B9	4	\$278F	2	$25^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)

\$1978	4	\$283C	2	$26^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$197C	4	\$283E	2	$27^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1980	4	\$2840	2	$28^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$1984	4	\$2842	2	$29^{\text {TH }}$ CURRENT HARMONIC OF THE L_{3} PHASE	[\%]	(Unsigned)
\$1988	4	\$2844	2	$30^{\text {TH }}$ CURRENT HARMONIC OF THE L ${ }_{3}$ PHASE	[\%]	(Unsigned)
\$198C	4	\$2846	2	$31^{\text {TH }}$ CURRENT HARMONIC OF THE L 3 PHASE	[\%]	(Unsigned)

SAMPLES VALUES STORED IN RAM (Function code \$03)

Integer		Float (IEEE)		Description	M.U.	Type
Register HEX	Word	$\begin{gathered} \text { Register } \\ \text { HEX } \end{gathered}$	Word			
\$19A3	3	\$2B37	3	YY MM DD	[-]	(Unsigned)
\$19A6	3	\$2B3A	3	HH MM SS	[-]	(Unsigned)
\$19A9	1	\$2B3D	1	time of mem	[min]	(Unsigned)
\$1A4D	4	\$2DA0	2	3-PHASE SYSTEM VOLTAGE	[mV]	(Unsigned)
\$1A51	4	\$2DA2	2	PHASE VOLTAGE L ${ }_{\text {1-N }}$	[mV]	(Unsigned)
\$1A55	4	\$2DA4	2	PHASE VOLTAGE L2-N	[mV]	(Unsigned)
\$1A59	4	\$2DA6	2	PHASE VOLTAGE $L^{3-\mathrm{N}}$	[mV]	(Unsigned)
\$1A5D	4	\$2DA8	2	LINE VOLTAGE L_{1-2}	[mV]	(Unsigned)
\$1A61	4	\$2DAA	2	LINE VOLTAGE L2-3	[mV]	(Unsigned)
\$1A65	4	\$2DAC	2	LINE VOLTAGE L3-1	[mV]	(Unsigned)
\$1A69	4	\$2DAE	2	3-PHASE SYSTEM CURRENT	[mA]	(Signed)
\$1A6D	4	\$2DB0	2	LINE CURRENT L ${ }_{1}$	[mA]	(Signed)
\$1A71	4	\$2DB2	2	LINE CURRENT L2	[mA]	(Signed)
\$1A75	4	\$2DB4	2	LINE CURRENT L_{3}	[mA]	(Signed)
\$1A79	4	\$2DB6	2	3-PHASE SYS. POWER FACTOR	[-]	(Signed)
\$1A7D	4	\$2DB8	2	POWER FACTOR L_{1}	[-]	(Signed)
\$1A81	4	\$2DBA	2	POWER FACTOR L L_{2}	[-]	(Signed)
\$1A85	4	\$2DBC	2	POWER FACTOR L ${ }_{3}$	[-]	(Signed)
\$1A89	4	\$2DBE	2	3-PHASE S. APPARENT POWER	[mVA]	(Signed)
\$1A8D	4	\$2DC0	2	APPARENT POWER L 1	[mVA]	(Signed)
\$1A91	4	\$2DC2	2	APPARENT POWER L2	[mVA]	(Signed)
\$1A95	4	\$2DC4	2	APPARENT POWER L3	[mVA]	(Signed)
\$1A99	4	\$2DC6	2	3-PHASE SYS. ACTIVE POWER	[mW]	(Signed)
\$1A9D	4	\$2DC8	2	ACTIVE POWER L_{1}	[mW]	(Signed)
\$1AA1	4	\$2DCA	2	ACTIVE POWER L L_{2}	[mW]	(Signed)
\$1AA5	4	\$2DCC	2	ACTIVE POWER L3	[mW]	(Signed)
\$1AA9	4	\$2DCE	2	3-PHASE S. REACTIVE POWER	[mVAR]	(Signed)
\$1AAD	4	\$2DD0	2	REACTIVE POWER L_{1}	[mVAR]	(Signed)
\$1AB1	4	\$2DD2	2	REACTIVE POWER L_{2}	[mVAR]	(Signed)
\$1AB5	4	\$2DD4	2	REACTIVE POWER L3	[mVAR]	(Signed)
\$1AB9	4	\$2DD6	2	FREQUENCY	[mHz]	(Unsigned)
\$1ABD	4	\$2DD8	2	THD VOLTAGE L_{1}	[m\%]	(Unsigned)
\$1AC1	4	\$2DDA	2	THD VOLTAGE L2	[m\%]	(Unsigned)
\$1AC5	4	\$2DDC	2	THD VOLTAGE L3	[m\%]	(Unsigned)
\$1AC9	4	\$2DDE	2	THD CURRENT L_{1}	[m\%]	(Unsigned)
\$1ACD	4	\$2DE0	2	THD CURRENT L2	[m\%]	(Unsigned)
\$1AD1	4	\$2DE2	2	THD CURRENT L ${ }_{3}$	[m\%]	(Unsigned)
\$1AD5	4	\$2DE4	2	3-PHASE AVG. ACTIVE POWER	[mW]	(Unsigned)

COUNTERS VALUES STORED IN RAM (Function.code \$03)

Integer		Double (IEEE)		Description	U.M.	Type
Register HEX	Word	Register HEX	Word			
\$1F40	3	\$2E00	3	YY MM DD	[-]	(Unsigned)
\$1F43	3	\$2E03	3	HH MM 00	[-]	(Unsigned)
\$1F46	1	\$2E06	1	time of mem	[min]	(Unsigned)
\$1F47	1	\$2E07	1	Block full of $0=\mathrm{NO} / 1=\mathrm{Yes}$ (1 word)	[-]	(Unsigned)
\$1F48	4	\$2E08	4	Wh+	[-]	(Unsigned)
\$1F4C	4	\$2E0C	4	VArh+	[-]	(Unsigned)
\$1F50	4	\$2E10	4	Wh-	[-]	(Unsigned)
\$1F54	4	\$2E14	4	VArh-	[-]	(Unsigned)
\$1F58	4	\$2E18	4	Counter 1	[-]	(Unsigned)
\$1F5C	4	\$2E1C	4	Counter 2	[-]	(Unsigned)
\$1F60	4	\$2E20	4	Counter 3	[-]	(Unsigned)
\$1F64	4	\$2E24	4	Counter 4	[-]	(Unsigned)
\$1F68	4	\$2E28	4	Counter 5	[-]	(Unsigned)
\$1F6C	4	\$2E2C	4	Counter 6	[-]	(Unsigned)
\$1F70	4	\$2E30	4	Counter 7	[-]	(Unsigned)
\$1F74	4	\$2E34	4	Counter 8	[-]	(Unsigned)

ENERGY COUNTERS - Double format (Function code \$03)

Integer		Float (IEEE)		Description	M.U.	Type
Register HEX	Word	Register HEX	Word			
N.A.		\$2A50	4	3-PHASE SYS. ACTIVE ENERGY+	[-]	[-]
N.A.		\$2A54	4	3-PHASE SYS. ACTIVE ENERGY-	[-]	[-]
N.A.		\$2A58	4	3-PHASE SYS. REACTIVE EN.+	[-]	[-]
N.A.		\$2A5C	4	3-PHASE SYS. REACTIVE.EN.-	[-]	[-]

ANALOG OUTPUT PWM VALUES (Function code \$03)

(Returned values: $0=0 \mathrm{~mA} \div 255=20 \mathrm{~mA}$)

Integer		Float (IEEE)		Description	M.U.	Type
Register HEX	Word	Register HEX	Word			
\$1A1A	2	N.A.	[-]	PWM ANALOG OUTPUT 1	[-]	[-]
\$1A1B	2	N.A.	[-]	PWM ANALOG OUTPUT 2	[-]	[-]
\$1A1C	2	N.A.	[-]	PWM ANALOG OUTPUT 3	[-]	[-]
\$1A1D	2	N.A.	[-]	PWM ANALOG OUTPUT 4	[-]	[-]

WAVEFORM'S SAMPLES (Function code \$03)
(64 x integer value)

Integer		Float (IEEE)		Description	M.U.	Type
Register HEX	Word	Register HEX	Word			
\$1F30	64	N.A.	[-]	64 SAMPLES OF LINE VOLTAGE L_{1}	[-]	[-]
\$1F32	64	N.A.	[-]	64 SAMPLES OF LINE VOLTAGE L2	[-]	[-]
\$1F34	64	N.A.	[-]	64 SAMPLES OF LINE VOLTAGE L_{3}	[-]	[-]
\$1F36	64	N.A.	[-]	64 SAMPLES OF LINE CURRENT L_{1}	[-]	[-]
\$1F38	64	N.A.	[-]	64 SAMPLES OF LINE CURRENT L_{2}	[-]	[-]
\$1F3A	64	N.A.	[-]	64 SAMPLES OF LINE CURRENT L3	[-]	[-]

HOUR COUNTERS - Long Integer format (Function code \$03)

Integer		Float (IEEE)		Description	M.U.	Type
Register HEX	Word	Register HEX	Word			
\$1625	4	N.A.	[-]	HOUR COUNTER 1	[s]	[-]
\$1629	4	N.A.	[-]	HOUR COUNTER 2	[s]	[-]
\$162D	4	N.A.	[-]	HOUR COUNTER 3	[s]	[-]
\$1631	4	N.A.	[-]	HOUR COUNTER 4	[s]	[-]
\$1635	4	N.A.	[-]	HOUR COUNTER 5	[s]	[-]
\$1639	4	N.A.	[-]	HOUR COUNTER 6	[s]	[-]

ONLY READ EMA PARAMETERS (Function code \$03)

Register HEX	Word	Description	Range
\$1A00	5	SERIAL NUMBER	XXXXXXXXX
\$1A05	7	VERSION NUMBER	XXX.XXXX
\$1A0D	1	TYPE OF RAM	$\begin{aligned} & 1=32 \mathrm{kB} \\ & 2=128 \mathrm{kB} \\ & 3=256 \mathrm{kB} \\ & 4=512 \mathrm{kB} \\ & 5=1024 \mathrm{~Kb} \end{aligned}$
\$1A0E	1	BI/MO DIRECTIONAL	$\begin{aligned} & 1=\text { mono } \\ & 2=\text { bidir. } \end{aligned}$
\$1A0F	1	NUMBER OF DIGITAL OUTPUTS	$\begin{aligned} & 0=\text { none } \\ & 1=1 \\ & \text { ecc.=ecc. } \end{aligned}$
\$1A10	1	NUMBER OF ANALOG OUTPUTS	$\begin{aligned} & 0=\text { none } \\ & 1=1 \\ & \text { ecc. }=\text { ecc. } . \end{aligned}$
\$1A11	1	NUMBER OF DIGITAL INPUTS	$\begin{aligned} & 0=\text { none } \\ & 1=1 \\ & \text { ecc.=ecc. } \end{aligned}$
\$1A12	9	INFO STORAGE AVG.POWERS	byte1 $\div 2$: status (0=OFF; 1=ON) (int) byte3 $\div 6$: number of records (long) byte $7 \div 10$: memory reserved (KB) (float) byte $11 \div 14$: memory used (KB) (float) byte $15 \div 18$: memory free (KB) (float)
\$1A13	9	INFO STORAGE MIN./MAX	as before
\$1A14	9	INFO STORAGE HARMONICS	as before
\$1A15	9	INFO STORAGE SAMPLES	as before
\$1A17	9	INFO STORAGE COUNTERS	as before
\$1A18	2	HARDWARE \& OPTIONS INFO	bit0: harmonics (0=dis.; 1=en.) bit1: time bands (0=dis.; 1=en.) bit2 $\div 3$: N.A. bit4 $\div 7$: number of Dig.Inp ($0 \div 15$) bit $8 \div 11$: number of Dig. Out ($0 \div 15$) bit12 $\div 15$: number of An.Out ($0 \div 15$) bit16 $\div 31$: N.A.
\$1A19	1	SUB-VERSION FIRMWARE	XX
\$1A28	1	BAUD RATE	$\begin{aligned} & 2=1200 \text { baud } \\ & 3=2400 \text { baud } \\ & 4=4800 \text { baud } \\ & 5=9600 \text { baud } \\ & 6=19200 \text { baud } \end{aligned}$
\$1A29	1	PARITY	$\begin{aligned} & 0=\text { none } \\ & 1=\text { even parity } \\ & 2=\text { odd parity } \\ & \hline \end{aligned}$
\$1A2A	1	BIT	$\begin{aligned} & 7=7 \mathrm{bit} \\ & 8=8 \mathrm{bit} \end{aligned}$
\$1ADB	2	DIGITAL OUTPUT STATUS	$\begin{gathered} \text { bit }(n)=\operatorname{DI}(n+1) \\ n=0 . .5 \\ (0=O F F ; 1=O N) \end{gathered}$
\$1ADC	2	DIGITAL INPUT STATUS	$\begin{gathered} \operatorname{bit}(n)=\mathrm{DI}(n+1) \\ n=0 . .5 \\ (0=O F F ; 1=O N) \end{gathered}$

READ \& WRITE EMA PARAMETERS (Function code \$03 \& \$10)
NOTE: the variable indicated by yes resets the instrument. Wait 1 second before sending another command

Integer Register HEX	Word		Range	Rescription

Float Register HEX	Word	Description	Range	Reset
\$2A32	2	TRANFORM CT RATIO floating point	$0.01 \div 9999.99$	YES
\$2A34	2	TRANFORM VT RATIO floating point	$0.01 \div 9999.99$	YES
\$2A36	2	FORCED FREQUENCY floating point	$5.00 \div 500.00$	(readonly)

(Firmware x.11.15 or previous)
TIMEBANDS- TARIFF PERIOD 1

Integer Register HEX	Word	Description	Range	Reset
\$3100	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
\$3103	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
\$3106	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
\$3109	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
\$310C	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
\$310F	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
\$3112	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
\$3115	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
\$3118	1	DAY selecting	(2)	NO
\$3119	1	MONTH selecting	(3)	NO

(1) it defines the beginning (hours and minutes) of each tariff band during the day.
it is possible to input up to 8 changes during the day.
it is possible to set four different bands ($0,1,2,3$).
i.e.: to program the start of $2^{s t}$ tariff band (1) at 06:00 send $\$ 0006, \$ 0000, \$ 0001$
(2) DAY: Programming: put to 1 the Bit relative to the day which are selected.

X	0	0	0	0	0	0	0	0	0						
$M o$	$T u$	$W e$	$T h$	$F r$	$S a$	$S u$									

i.e..to program all day from Monday to Friday send \$F800
(3) MONTH Programming: put to 1 the Bit relative to the month which are selected.

X	0	0	0	0											
$J a$	$F e$	$M a$	$A p$	$M a$	$J u$	$J u$	$A u$	$S e$	$O c$	$N o$	$D e$				

i.e..to programming the month of November,December,January,February and March send \$E030

TIMEBANDS-TARIFF PERIOD 2

Integer Register HEX	Word	Description	Range	Reset
$\$ 311 \mathrm{~A}$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 311 \mathrm{D}$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 3120$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 3123$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 3126$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 3129$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 312 C$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 312 \mathrm{~F}$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 3132$	1	DAY selecting	(2)	NO
$\$ 3133$	1	MONTH selecting	(3)	NO

TIMEBANDS-TARIFF PERIOD 3

Integer Register HEX	Word	Description	Range	Reset
$\$ 3134$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 3137$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 313 \mathrm{~A}$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 313 \mathrm{D}$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 3140$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 3143$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 3146$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 3149$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 314 C$	1	DAY selecting	(2)	NO
$\$ 314 \mathrm{D}$	1	MONTH selecting	(3)	NO

TIMEBANDS-TARIFF PERIOD 4

Integer Register HEX	Word	Description	Range	Reset
$\$ 314 \mathrm{E}$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 3151$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 3154$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 3157$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 315 \mathrm{~A}$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 315 \mathrm{D}$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 3160$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 3163$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 3166$	1	DAY selecting	(2)	NO
$\$ 3167$	1	MONTH selecting	(3)	NO

TIMEBANDS-TARIFF PERIOD 5

Integer Register HEX	Word	Description	Range	Reset
$\$ 3168$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 316 \mathrm{~B}$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 316 \mathrm{E}$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 3171$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 3174$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 3177$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 317 \mathrm{~A}$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 317 \mathrm{D}$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 3180$	1	DAY selecting	(2)	NO
$\$ 3181$	1	MONTH selecting	(3)	NO

TIMEBANDS-TARIFF PERIOD 6

Integer Register HEX	Word	Description	Range	Reset
$\$ 3182$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 3185$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 3188$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 318 \mathrm{~B}$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 318 \mathrm{E}$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 3191$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 3194$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 3197$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 319 \mathrm{~A}$	1	DAY selecting	(2)	NO
$\$ 319 \mathrm{~B}$	1	MONTH selecting	(3)	NO

TIMEBANDS-TARIFF PERIOD 7

Integer Register HEX	Word	Description	Range	Reset
$\$ 319 \mathrm{C}$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 319 F$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 31 \mathrm{~A} 2$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 31 \mathrm{~A} 5$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 31 \mathrm{~A} 8$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 31 \mathrm{AB}$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 31 \mathrm{AE}$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 31 \mathrm{~B} 1$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 31 \mathrm{~B} 4$	1	DAY selecting	(2)	NO
$\$ 31 \mathrm{~B} 5$	1	MONTH selecting	(3)	NO

TIMEBANDS-TARIFF PERIOD 8

Integer Register HEX	Word	Description	Range	Reset
$\$ 31 B 6$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 31 B 9$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 31 B C$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 31 B F$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 31 C 2$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 31 C 5$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 31 C 8$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 31 C B$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 31 C E$	1	DAY selecting	(2)	NO
$\$ 31 C F$	1	MONTH selecting	(3)	NO

TIMEBANDS-TARIFF PERIOD 9

Integer Register HEX	Word	Description	Range	Reset
\$31D0	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
\$31D3	3	Hours and Minutes and band of begin the 2 ${ }^{\text {nd }}$ tariff band	(1)	NO
\$31D6	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
\$31D9	3	Hours and Minutes and band of begin the 4 $4^{\text {th }}$ tariff band	(1)	NO
\$31DC	3	Hours and Minutes and band of begin the 5 ${ }^{\text {th }}$ tariff band	(1)	NO
\$31DF	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
\$31E2	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
\$31E5	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 31 E 8$	1	DAY selecting	(2)	NO
$\$ 31 E 9$	1	MONTH selecting	(3)	NO

TIMEBANDS-TARIFF PERIOD 10

Integer Register HEX	Word	Description	Range	Reset
\$31EA	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
\$31ED	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
\$31F0	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
\$31F3	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
\$31F6	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
\$31F9	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
\$31FC	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
\$31FF	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
\$3202	1	DAY selecting	(2)	NO
\$3203	1	MONTH selecting	(3)	NO

(Firmware x.11.16 or upper)
TIMEBANDS- TARIFF PERIOD 1

Integer Register HEX	Word	Description	Range	Reset
\$3100	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
\$3103	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
\$3106	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
\$3109	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
\$310C	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
\$310F	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
\$3112	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
\$3115	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
\$3118	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
\$311B	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
\$311E	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
\$3121	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
\$3124	1	DAY selecting	(2)	NO
\$3125	1	StartMonth	(3)	NO
\$3126	1	StartDay	(3)	NO
\$3127	1	StopMonth	(3)	NO
\$3128	1	StopDay	(3)	NO

(1) it defines the beginning (hours and minutes) of each tariff band during the day.
it is possible to input up to 12 changes during the day.
it is possible to set four different bands $(0,1,2,3)$.
i.e.: to program the start of $2^{\text {st }}$ tariff band (1) at 06:00 send $\$ 0006, \$ 0000, \$ 0001$
(2) DAY: Programming: put to 1 the Bit relative to the day which are selected.

X	0	0	0	0	0	0	0	0	0						
$M o$	$T u$	$W e$	$T h$	$F r$	$S a$	$S u$									

i.e..to program all day from Monday to Friday send \$F800
(3) it defines the beginning (month and day) and the ending (month and day) of the period. Month: 1=January, ..., 12=December.
Day: 1... 31.
TIMEBANDS- TARIFF PERIOD 2

Integer Register HEX	Word	Description	Range	Reset
$\$ 3129$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 312 C$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 312 F$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 3132$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 3135$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 3138$	3	Hours and Minutes and band of begin the 6 $6^{\text {th }}$ tariff band	(1)	NO
$\$ 313 B$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 313 \mathrm{E}$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 3141$	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
$\$ 3144$	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
$\$ 3147$	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
$\$ 314 \mathrm{~A}$	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
$\$ 314 \mathrm{D}$	1	DAY selecting	(2)	NO
$\$ 314 \mathrm{E}$	1	StartMonth	(3)	NO
$\$ 314 \mathrm{~F}$	1	StartDay	(3)	NO
$\$ 3150$	1	StopMonth	(3)	NO
$\$ 3151$	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 3

Integer Register HEX	Word		Range	Reset
$\$ 3152$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 3155$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 3158$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 315 \mathrm{~B}$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 315 \mathrm{E}$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 3161$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 3164$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 3167$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 316 \mathrm{~A}$	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
$\$ 316 \mathrm{D}$	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
$\$ 3170$	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
$\$ 3173$	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
$\$ 3176$	1	DAY selecting	(2)	NO
$\$ 3177$	1	StartMonth	(3)	NO
$\$ 3178$	1	StartDay	(3)	NO
$\$ 3179$	1	StopMonth	(3)	NO
$\$ 317 \mathrm{~A}$	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 4

Integer Register HEX	Word	Description	Range	Reset
$\$ 317 B$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 317 \mathrm{E}$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 3181$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 3184$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 3187$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 318$ A	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 318 \mathrm{D}$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 3190$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 3193$	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
$\$ 3196$	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
$\$ 3199$	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
$\$ 319 C$	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
$\$ 319 F$	1	DAY selecting	(2)	NO
$\$ 31$ A0	1	StartMonth	(3)	NO
$\$ 31 A 1$	1	StartDay	(3)	NO
$\$ 31$ A2	1	StopMonth	(3)	NO
$\$ 31$ A3	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 5

Integer Register HEX	Word	Description	Range	Reset
\$31A4	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
\$31A7	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
\$31AA	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
\$31AD	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
\$31B0	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
\$31B3	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
\$31B6	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
\$31B9	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
\$31BC	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
\$31BF	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
\$31C2	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
\$31C5	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
\$31C8	1	DAY selecting	(2)	NO
\$31C9	1	StartMonth	(3)	NO
\$31CA	1	StartDay	(3)	NO
\$31CB	1	StopMonth	(3)	NO
\$31CC	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 6

Integer Register HEX	Word	Description	Range	Reset
\$31CD	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
\$31D0	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
\$31D3	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
\$31D6	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
\$31D9	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
\$31DC	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
\$31DF	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
\$31E2	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
\$31E5	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
\$31E8	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
\$31EB	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
\$31EE	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
\$31F1	1	DAY selecting	(2)	NO
\$31F2	1	StartMonth	(3)	NO
\$31F3	1	StartDay	(3)	NO
\$31F4	1	StopMonth	(3)	NO
\$31F5	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 7

Integer Register HEX	Word	Description	Range	Reset
$\$ 31$ F6	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 31$ F9	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 31$ FC	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 31$ FF	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 3202$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 3205$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 3208$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 320 B$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 320 \mathrm{E}$	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
$\$ 3211$	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
$\$ 3214$	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
$\$ 3217$	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
$\$ 321 \mathrm{~A}$	1	DAY selecting	(2)	NO
$\$ 321 \mathrm{~B}$	1	StartMonth	(3)	NO
$\$ 321 \mathrm{C}$	1	StartDay	(3)	NO
$\$ 321 \mathrm{D}$	1	StopMonth	(3)	NO
$\$ 321 \mathrm{E}$	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 8

Integer Register HEX	Word	Description	Range	Reset
\$321F	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
\$3222	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
\$3225	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
\$3228	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
\$322B	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
\$322E	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
\$3231	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
\$3234	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
\$3237	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
\$323A	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
\$323D	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
\$3240	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
\$3243	1	DAY selecting	(2)	NO
\$3244	1	StartMonth	(3)	NO
\$3245	1	StartDay	(3)	NO
\$3246	1	StopMonth	(3)	NO
\$3247	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 9

Integer Register HEX	Word		Range	Reset
$\$ 3248$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 324 \mathrm{~B}$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 324 \mathrm{E}$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 3251$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 3254$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 3257$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 325 \mathrm{~A}$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 325 \mathrm{D}$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 3260$	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
$\$ 3263$	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
$\$ 3266$	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
$\$ 3269$	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
$\$ 326 \mathrm{C}$	1	DAY selecting	(2)	NO
$\$ 326 \mathrm{D}$	1	StartMonth	(3)	NO
$\$ 326 \mathrm{E}$	1	StartDay	(3)	NO
$\$ 326 \mathrm{~F}$	1	StopMonth	(3)	NO
$\$ 3270$	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 10

Integer Register HEX	Word	Description	Range	Reset
$\$ 3271$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 3274$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 3277$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 327 A$	3	Hours and Minutes and band of begin the 4 $4^{\text {th }}$ tariff band	(1)	NO
$\$ 327 \mathrm{D}$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 3280$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 3283$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 3286$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 3289$	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
$\$ 328 C$	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
$\$ 328 F$	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
$\$ 3292$	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
$\$ 3295$	1	DAY selecting	(2)	NO
$\$ 3296$	1	StartMonth	(3)	NO
$\$ 3297$	1	StartDay	(3)	NO
$\$ 3298$	1	StopMonth	(3)	NO
$\$ 3299$	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 11

Integer Register HEX	Word	Description	Range	Reset
\$329A	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
\$329D	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
\$32A0	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
\$32A3	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
\$32A6	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
\$32A9	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
\$32AC	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
\$32AF	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
\$32B2	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
\$32B5	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
\$32B8	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
\$32BB	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
\$32BE	1	DAY selecting	(2)	NO
\$32BF	1	StartMonth	(3)	NO
\$32C0	1	StartDay	(3)	NO
\$32C1	1	StopMonth	(3)	NO
\$32C2	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 12

Integer Register HEX	Word	Description	Range	Reset
\$32C3	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
\$32C6	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
\$32C9	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
\$32CC	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
\$32CF	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
\$32D2	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
\$32D5	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
\$32D8	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
\$32DB	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
\$32DE	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
\$32E1	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
\$32E4	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
\$32E7	1	DAY selecting	(2)	NO
\$32E8	1	StartMonth	(3)	NO
\$32E9	1	StartDay	(3)	NO
\$32EA	1	StopMonth	(3)	NO
\$32EB	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 13

Integer Register HEX	Word	Description	Range	Reset
$\$ 32 E C$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 32 E F$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 32 F 2$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 32 F 5$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 32 F 8$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 32 F B$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 32 F E$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 3301$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 3304$	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
$\$ 3307$	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
$\$ 330 \mathrm{~A}$	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
$\$ 330 \mathrm{D}$	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
$\$ 3310$	1	DAY selecting	(2)	NO
$\$ 3311$	1	StartMonth	(3)	NO
$\$ 3312$	1	StartDay	(3)	NO
$\$ 3313$	1	StopMonth	(3)	NO
$\$ 3314$	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 14

Integer Register HEX	Word	Description	Range	Reset
$\$ 3315$	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
$\$ 3318$	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
$\$ 331 B$	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
$\$ 331 \mathrm{E}$	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
$\$ 3321$	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
$\$ 3324$	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
$\$ 3327$	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
$\$ 332 A$	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
$\$ 332 \mathrm{D}$	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
$\$ 3330$	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
$\$ 3333$	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
$\$ 3336$	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
$\$ 3339$	1	DAY selecting	(2)	NO
$\$ 333 A$	1	StartMonth	(3)	NO
$\$ 333 B$	1	StartDay	(3)	NO
$\$ 333 C$	1	StopMonth	(3)	NO
$\$ 333 D$	1	StopDay	(3)	NO

TIMEBANDS- TARIFF PERIOD 15

Integer Register HEX	Word	Description	Range	Reset
\$333E	3	Hours and Minutes and band of begin the $1^{\text {st }}$ tariff band	(1)	NO
\$3341	3	Hours and Minutes and band of begin the $2^{\text {nd }}$ tariff band	(1)	NO
\$3344	3	Hours and Minutes and band of begin the $3^{\text {rd }}$ tariff band	(1)	NO
\$3347	3	Hours and Minutes and band of begin the $4^{\text {th }}$ tariff band	(1)	NO
\$334A	3	Hours and Minutes and band of begin the $5^{\text {th }}$ tariff band	(1)	NO
\$334D	3	Hours and Minutes and band of begin the $6^{\text {th }}$ tariff band	(1)	NO
\$3350	3	Hours and Minutes and band of begin the $7^{\text {th }}$ tariff band	(1)	NO
\$3353	3	Hours and Minutes and band of begin the $8^{\text {th }}$ tariff band	(1)	NO
\$3356	3	Hours and Minutes and band of begin the $9^{\text {th }}$ tariff band	(1)	NO
\$3359	3	Hours and Minutes and band of begin the $10^{\text {th }}$ tariff band	(1)	NO
\$335C	3	Hours and Minutes and band of begin the $11^{\text {th }}$ tariff band	(1)	NO
\$335F	3	Hours and Minutes and band of begin the $12^{\text {th }}$ tariff band	(1)	NO
\$3362	1	DAY selecting	(2)	NO
\$3363	1	StartMonth	(3)	NO
\$3364	1	StartDay	(3)	NO
\$3365	1	StopMonth	(3)	NO
\$3366	1	StopDay	(3)	NO

HOLYDAYS (read only)

Integer Register HEX	Word	Description
\$3400	1	day of holyday no. 1
\$3401	1	month of holyday no. 1
\$3402	1	day of holyday no. 2
\$3403	1	month of holyday no. 2
\$3404	1	day of holyday no. 3
\$3405	1	month of holyday no. 3
\$3406	1	day of holyday no. 4
\$3407	1	month of holyday no. 4
\$3408	1	day of holyday no. 5
\$3409	1	month of holyday no. 5
\$340A	1	day of holyday no. 6
\$340B	1	month of holyday no. 6
\$340C	1	day of holyday no. 7
\$340D	1	month of holyday no. 7
\$340E	1	day of holyday no. 8
\$340F	1	month of holyday no. 8
\$3410	1	day of holyday no. 9
\$3411	1	month of holyday no. 9
\$3412	1	day of holyday no. 10
\$3413	1	month of holyday no. 10
\$3414	1	day of holyday no. 11
\$3415	1	month of holyday no. 11
\$3416	1	day of holyday no. 12
\$3417	1	month of holyday no. 12
\$3418	1	day of holyday no. 13
\$3419	1	month of holyday no. 13
\$341A	1	day of holyday no. 14
\$341B	1	month of holyday no. 14
\$341C	1	day of holyday no. 15
\$341D	1	month of holyday no. 15
\$341E	1	day of holyday no. 16
\$341F	1	month of holyday no. 16
\$3420	1	day of holyday no. 17
\$3421	1	month of holyday no. 17
\$3422	1	day of holyday no. 18
\$3423	1	month of holyday no. 18
\$3424	1	day of holyday no. 19
\$3425	1	month of holyday no. 19
\$3426	1	day of holyday no. 20
\$3427	1	month of holyday no. 20
\$3428	1	day of holyday no. 21
\$3429	1	month of holyday no. 21
\$342A	1	day of holyday no. 22
\$342B	1	month of holyday no. 22
\$342C	1	day of holyday no. 23
\$342D	1	month of holyday no. 23
\$342E	1	day of holyday no. 24
\$342F	1	month of holyday no. 24
\$3430	1	day of holyday no. 25
\$3431	1	month of holyday no. 25
\$3432	1	day of holyday no. 26
\$3433	1	month of holyday no. 26
\$3434	1	day of holyday no. 27
\$3435	1	month of holyday no. 27
\$3436	1	day of holyday no. 28
\$3437	1	month of holyday no. 28
\$3438	1	day of holyday no. 29
\$3439	1	month of holyday no. 29
\$343A	1	day of holyday no. 30
\$343B	1	month of holyday no. 30

$\$ 343 \mathrm{C}$	1	day of holyday no. 31
$\$ 343 \mathrm{D}$	1	month of holyday no. 31
$\$ 343 \mathrm{E}$	1	day of holyday no. 32
$\$ 343 \mathrm{~F}$	1	month of holyday no. 32
$\$ 3440$	1	day of holyday no. 33
$\$ 3441$	1	month of holyday no. 33
$\$ 3442$	1	day of holyday no. 34
$\$ 3443$	1	month of holyday no. 34
$\$ 3444$	1	day of holyday no. 35
$\$ 3445$	1	month of holyday no. 35
$\$ 3446$	1	day of holyday no. 36
$\$ 3447$	1	month of holyday no. 36
$\$ 3448$	1	day of holyday no. 37
$\$ 3449$	1	month of holyday no. 37
$\$ 344 \mathrm{~A}$	1	day of holyday no. 38
$\$ 344 \mathrm{~B}$	1	month of holyday no. 38
$\$ 344 \mathrm{C}$	1	day of holyday no. 39
$\$ 344 \mathrm{D}$	1	month of holyday no. 39
$\$ 344 \mathrm{E}$	1	day of holyday no. 40
$\$ 344 \mathrm{~F}$	1	month of holyday no. 40

GENERIC COUNTERS VALUES- Double format

Register HEX	Word		Rescription	$0 \div 99999999.9$
$\$ 2 B 00$	4	Generic Counter 1 Value	NO	
$\$ 2 B 02$	4	Generic Counter 2 Value	$0 \div 99999999.9$	NO
$\$ 2 B 04$	4	Generic Counter 3 Value	$0 \div 999999999.9$	NO
$\$ 2 B 06$	4	Generic Counter 4 Value	$0 \div 999999999.9$	NO
$\$ 2 \mathrm{B08}$	4	Generic Counter 5 Value	$0 \div 99999999.9$	NO
$\$ 2 \mathrm{BOA}$	4	Generic Counter 6 Value	$0 \div 99999999.9$	NO
$\$ 2 \mathrm{BOC}$	4	Generic Counter 7 Value	$0 \div 999999999.9$	NO
$\$ 2 B 0 E$	4	Generic Counter 8 Value	$0 \div 999999999.9$	NO

GENERIC COUNTERS SETTINGS

Register HEX	Word	Description	Range	Reset
\$2B10	7	Generic Counter 1 Setting	(*)	NO
\$2B12	7	Generic Counter 2 Setting	(*)	NO
\$2B14	7	Generic Counter 3 Setting	(*)	NO
\$2B16	7	Generic Counter 4 Setting	(*)	NO
\$2B18	7	Generic Counter 5 Setting	(*)	NO
\$2B1A	7	Generic Counter 6 Setting	(*)	NO
\$2B1C	7	Generic Counter 7 Setting	(*)	NO
\$2B1E	7	Generic Counter 8 Setting	(*)	NO

(*)
Description:
Byte(s) Read/Write
1: \quad Counter (i) -> Digital Input association
2: Counter's name type ($0=\mathrm{kWh}+$; 1=kWh-; 2=kVArh+; 3=kVArh-; 4=Water; 5=Gas; 6=User.)
$3 \div 10: \quad$ Counter's name (ASCll codes)
$11 \div 14$: Pulse's weight ($0 \div$ 1999.99)

ONLY WRITE EMA PARAMETERS (Function code \$10)

Register HEX	Word	Description	Range	Reset
\$1A90	1	DELETING RAM	9=deleting all archives	YES
\$1A91	1	SET RAM STORING	$0=$ nothing $1=15$ ' $2=m i n / m a x$ 3=15' $+\mathrm{min} / \mathrm{max}$ 4=armonics 5=15'+armonics 6=min/max+armonics 7=15'+min/max+armonics 8=sample $9=15$ '+sample A=min/max+sample $B=15$ '+min $/$ max + sample C=armonics+sample D=15'+armonics+sample $\mathrm{E}=\mathrm{min} / \mathrm{max}+$ armonics+sample $\mathrm{F}=15^{\prime}+\mathrm{min} /$ max+armonics+sample 10=counters 11=15'+counters 12=min/max+counters $13=15^{\prime}+\mathrm{min} / \mathrm{max}+$ counters 14=armonics+counters $15=15$ '+armonics+counters $16=\mathrm{min} / \mathrm{max}+$ armonics + counters 17=15' $+\mathrm{min} / \mathrm{max}+$ armonics+counters 18=sample+counters 19=15'+sample+counters $1 \mathrm{~A}=\mathrm{min} /$ max+sample+counters $1 B=15$ '+min/max+sample+counters $1 \mathrm{C}=$ armonics+sample+counters 1D=15'+armonics+sample+counters $1 \mathrm{E}=\mathrm{min} /$ max+armonics+sample+counters $1 \mathrm{~F}=15^{\prime}+\mathrm{min} / \mathrm{max}+$ armonics+sample+counters	YES
\$1A92	1	15' STORED IN RAM	$0=$ nothing 1=delete first one	YES
\$1A93	1	MIN/MAX STORED IN RAM	$0=$ nothing 1=sending the following block 2=deleting all min/max value in RAM	NO
\$1A94	1	HARMONICS STORED IN RAM	$0=$ nothing 1=delete first one	NO
\$1A95	1	SAMPLES STORED IN RAM	$0=$ nothing 1=delete first one	NO
\$1A96	1	CONSUMPTION ENERGY COUNTER	$\begin{aligned} & \text { 1=reset count B0...B3 } \\ & \text { 2=reset timebands } \\ & \text { 3=reset all } \end{aligned}$	YES
\$1A97	1	MIN/MAX VALUES	1=reset all	NO
\$1A98	1	COUNTERS STORED IN RAM	$0=$ nothing 1=delete first one	NO
\$1A4D	-	SAMPLES RATE + SET VARIABLE	See Note 1	YES
\$1A50	1	COUNTERS RATE	0 $\div 9999$ (min.)	NO
\$1A51	1	Wh+	$\begin{aligned} & 0=\text { disabled } \\ & 1=\text { enabled } \end{aligned}$	NO
\$1A52	1	VArh+	$\begin{aligned} & 0=\text { disabled } \\ & 1=\text { enabled } \end{aligned}$	NO
\$1A53	1	Wh-	$\begin{aligned} & 0=\text { disabled } \\ & 1=\text { enabled } \end{aligned}$	NO
\$1A54	1	VArh-	$\begin{aligned} & 0=\text { disabled } \\ & 1=\text { enabled } \end{aligned}$	NO
\$1A55	1	Counter 1	$\begin{aligned} & 0=\text { disabled } \\ & 1=\text { enabled } \end{aligned}$	NO
\$1A56	1	Counter 2	$\begin{aligned} & 0=\text { disabled } \\ & 1=\text { enabled } \end{aligned}$	NO
\$1A57	1	Counter 3	$\begin{aligned} & 0=\text { disabled } \\ & 1=\text { enabled } \end{aligned}$	NO

$\$ 1 A 58$	1	Counter 4	$0=$ disabled $1=$ enabled	NO
$\$ 1 A 59$	1	Counter 5	$0=$ disabled $1=$ enabled	NO
$\$ 1 A 5 A$	1	Counter 6	$0=$ disabled $1=$ enabled	NO
\$1A5B	1	Counter 7	0=disabled $1=$ enabled	NO
\$1A5C	1	Counter 8	$0=$ disabled $1=$ enabled	NO

Note 1.

The first word is the rate in seconds (Int type).
The following chars are the measure code of the variables that must be enabled.
If the number of the activated variables s odd, then it is necessary to follow a 0×00 char to end the list. If the number of the activated variables is even, then it is necessary to follow a 0×0000 word to end the list.

Ex.

Setting for all the available variables:

808182838485868889 8A 8B 909192939899 9A 9B A0 A1 A2 A3 A8 A9 AA AB B4 B6 B7 B8 8C 8D 8E B9 00 list of variables plus 0×00 termination

Setting for an even number of variables:
81828389 8A 8B 0000
list of variables plus 0×0000 termination
Setting for an odd number of variables:
80818388 8B 90 B4 00 list of variables plus 0x00 termination

The measure code for the variables available to store into the RAM are the following:

Measure	Code
3-PHASE SYSTEM VOLTAGE	\$80
PHASE VOLTAGE Li-N	\$81
PHASE VOLTAGE L2-N	\$82
PHASE VOLTAGE L3-N	\$83
LINE VOLTAGE L1-2	\$84
LINE VOLTAGE L2-3	\$85
LINE VOLTAGE L3-1	\$86
3-PHASE SYSTEM CURRENT	\$88
LINE CURRENT L_{1}	\$89
LINE CURRENT L_{2}	\$8A
LINE CURRENT L_{3}	\$8B
3-PHASE SYS. POWER FACTOR	\$90
POWER FACTOR L ${ }_{1}$	\$91
POWER FACTOR L2	\$92
POWER FACTOR L ${ }_{3}$	\$93
3-PHASE S. APPARENT POWER	\$98
APPARENT POWER L ${ }_{1}$	\$99
APPARENT POWER L L_{2}	\$9A
APPARENT POWER L ${ }_{3}$	\$9B
3-PHASE SYS. ACTIVE POWER	\$A0
ACTIVE POWER L ${ }_{1}$	\$A1
ACTIVE POWER L2	\$A2
ACTIVE POWER L3	\$A3
3-PHASE S. REACTIVE POWER	\$A8
REACTIVE POWER L ${ }_{1}$	\$A9
REACTIVE POWER L ${ }_{2}$	\$AA
REACTIVE POWER L ${ }_{3}$	\$AB
FREQUENCY	\$B4
THD VOLTAGE L ${ }_{1}$	\$B6
THD VOLTAGE L2	\$B7
THD VOLTAGE L3	\$B8
THD CURRENT L_{1}	\$8C
THD CURRENT L L_{2}	\$8D
THD CURRENT L3	\$8E
3-PHASE AVG. ACTIVE POWER	\$B9

DIGITAL OUT 1

Register HEX	Word	Description	Range	Reset
\$1AA0	1	MODE	$0=$ off $1=$ upper limit 2= lower limit $3=$ pulse $4=$ band $5=$ always on	YES
			$80-$ BC	
\$1AA1	1	VARIABLE	$0 \div 9.999$	YES
\$1AA2	1	PULSE COEFFICIENT	$50 \div 999$	YES
\$1AA3	1	PULSE DURATION (msec)	YES	
\$1AA4	1	INTERVENTION VALUE (integer)	YES	
\$1AA5	1	HYSTERISIS	$0-99$	YES
\$1AA6	1	DELAY TIME in sec	$0-999$	YES
\$2AA8	2	FLOAT INTERVENTION VALUE		YES
\$2AAA	2	FLOAT INF. BAND VALUE		YES
\$2AAC	2	FLOAT SUP.BAND VALUE		YES

DIGITAL OUT 2

Register HEX	Word	Description	Range	Reset
\$1AB0	1	MODE	$0=$ off 1= upper limit 2= lower limit 3= pulse 4= band $5=$ always on	YES
\$1AB1	1	VARIABLE	80-BC	YES
\$1AB2	1	PULSE COEFFICIENT	0 $\div 9.999$	YES
\$1AB3	1	PULSE DURATION (msec)	50999	YES
\$1AB4	1	INTERVENTION VALUE		YES
\$1AB5	1	HYSTERISIS	0-99	YES
\$1AB6	1	DELAY TIME in sec	0-999	YES
\$2AB8	2	FLOAT INTERVENTION VALUE		YES
\$2ABA	2	FLOAT INF. BAND VALUE		YES
\$2ABC	2	FLOAT SUP.BAND VALUE		YES

DIGITAL OUT 3

Register HEX	Word	Description	Range	Reset
\$1AC0	1	MODE	$\begin{aligned} & 0=\text { off } \\ & 1=\text { upper limit } \\ & 2=\text { lower limit } \\ & 3=\text { pulse } \\ & 4=\text { band } \\ & 5=\text { always on } \end{aligned}$	YES
\$1AC1	1	VARIABLE	80-BC	YES
\$1AC2	1	PULSE COEFFICIENT	0 $\div 9.999$	YES
\$1AC3	1	PULSE DURATION (msec)	50999	YES
\$1AC4	1	INTERVENTION VALUE		YES
\$1AC5	1	HYSTERISIS	0-99	YES
\$1AC6	1	DELAY TIME in sec	0-999	YES
\$2AC8	2	FLOAT INTERVENTION VALUE		YES
\$2ACA	2	FLOAT INF. BAND VALUE		YES
\$2ACC	2	FLOAT SUP.BAND VALUE		YES

DIGITAL OUT 4

Register HEX	Word	Description	Range	Reset
$\$ 1$ AD0	1	MODE	$\begin{array}{l}0=\text { off } \\ 1=\text { upper limit } \\ 2=\text { lower limit } \\ 3=\text { pulse } \\ 4=\text { band } \\ 5=~ a l w a y s ~ o n ~\end{array}$	

DIGITAL OUT 5

Register HEX	Word	Description	Range	Reset
\$1A70	1	MODE	$0=$ off $1=$ upper limit 2= lower limit 3= pulse 4= band $5=$ always on	YES
\$1A71	1	VARIABLE	80-BC	YES
\$1A72	1	PULSE COEFFICIENT	0 $\div 9.999$	YES
\$1A73	1	PULSE DURATION (msec)	50999	YES
\$1A74	1	INTERVENTION VALUE		YES
\$1A75	1	HYSTERISIS	0-99	YES
\$1A76	1	DELAY TIME in sec	0-999	YES
\$2AE8	2	FLOAT INTERVENTION VALUE		YES
\$2AEA	2	FLOAT INF. BAND VALUE		YES
\$2AEC	2	FLOAT SUP.BAND VALUE		YES

DIGITAL OUT 6

Register HEX	Word	Description	Range	Reset
\$1A80	1	MODE	$\begin{aligned} & 0=\text { off } \\ & 1=\text { upper limit } \\ & 2=\text { lower limit } \\ & 3=\text { pulse } \\ & 4=\text { band } \\ & 5=\text { always on } \end{aligned}$	YES
\$1A81	1	VARIABLE	80-BC	YES
\$1A82	1	PULSE COEFFICIENT	0 $\div 9.999$	YES
\$1A83	1	PULSE DURATION (msec)	50999	YES
\$1A84	1	INTERVENTION VALUE		YES
\$1A85	1	HYSTERISIS	0-99	YES
\$1A86	1	DELAY TIME in sec	0-999	YES
\$2AF8	2	FLOAT INTERVENTION VALUE		YES
\$2AFA	2	FLOAT INF. BAND VALUE		YES
\$2AFC	2	FLOAT SUP.BAND VALUE		YES

ANALOG OUT1

Register HEX	Word	Description	Range	Reset
$\$ 1$ AE0	1	MODE	$0=0-20 \mathrm{~mA}$ mono $1=4-20 \mathrm{~mA}$ mono	YES
$\$ 1 A E 1$	1	VARIABLE	$80 . . \mathrm{BC}$	YES
$\$ 11 E 2$	1	MIN LIMIT VALUE	YES	
$\$ 1 A E 3$	1	MAX.LIMIT VALUE	YES	

ANALOG OUT 2

Description	Range	Reset		
Register HEX	Word		$0=0-20 \mathrm{~mA}$ mono $1=4-20 \mathrm{~mA}$ mono	YES
$\$ 1$ AE8	1	MODE	$80 .$. BC	YES
$\$ 1$ AE9	1	VARIABLE	YES	
$\$ 1 A E A$	1	MIN LIMIT VALUE	YES	
$\$ 1 A E B$	1	MAX.LIMIT VALUE		

ANALOG OUT 3

Register HEX	Word	Description	Range	Reset
$\$ 1$ AF0	1	MODE	$0=0-20 \mathrm{~mA}$ mono $1=4-20 \mathrm{~mA}$ mono	YES
$\$ 1$ AF1	1	VARIABLE	$80 .$. BC	YES
$\$ 1$ AF2	1	MIN LIIIT VALUE	YES	
$\$ 1 A F 3$	1	MAX.LIMIT VALUE	YES	

ANALOG OUT 4

Register HEX	Word	Description	Range	Reset
$\$ 1$ AF8	1	MODE	$0=0-20 \mathrm{~mA}$ mono $1=4-20 \mathrm{~mA}$ mono	YES
$\$ 1$ AF9	1	VARIABLE	$80 .$. BC	YES
\$1AFA	1	MIN LIMIT VALUE	YES	
\$1AFB	1	MAX.LIMIT VALUE	YES	

DIGITAL IN 1

Register HEX	Word	Description	Range	Reset
\$1ADA	1	MODE	$0=$ off $1=$ sync. RTC $2=$ Timeband (with Digital In 2)	YES

DIGITAL IN 2

Register HEX	Word	Description	Range	Reset
\$1ADB	1	MODE	$0=$ off $1=$ sync. RTC $2=$ Timeband (with Digital In 2)	YES

ADVICE:PROGRAM OUTPUT PARAMETERS ALL AT THE SAME TIME TO PREVENT THE INSTRUMENT FROM RESETTING REPEATEDLY,THUS AVOIDING TIME WASTE

2.8) EXAMPLE OF READING AND SETUP REGISTERS

READING OF THE VALUES OF 4 CURRENTS (Function Code \$03)			
QUERY		RESPONSE	
Field Name	Example (Hex)	Field Name Ex	Example (Hex)
Slave Address	01	Slave Address	01
Function Code	03	Function Code	03
Starting Address Hi	10	Byte Count	20
Starting Address Lo	1 C	Data Hi \| Value	
Number Of Word Hi	00	Data Lo \| with	
Number Of Word Lo	10	Data Hi 4	
Error Check (LRC or CRC)	??	Data Lo \| word	
	??	Data Hi \| for	
		Data Lo \| each	
		Data Hi \| current	
		Data Lo \|	
		Or (for IEEE)	
		Data Hi \| Value	
		Data Lo with 2	
		Data Hi \| for each	
		Data Lo \|current	
		Error Check (LRC or CRC)	C) ??
			??

SET UP OF THE LOGICAL NUMBER [Slave Address] (Function Code \$10)			
QUERY		RESPONSE	
Field Name	Example (Hex)	Field Name Ex	Example (Hex)
Slave Address	01	Slave Address	01
Function Code	10	Function Code	10
Starting Address Hi	1A	Starting Address Hi	1A
Starting Address Lo	20	Starting Address Lo	20
Number Of Word Hi	00	Number Of Word Hi	00
Number Of Word Lo	01	Number Of Word Lo	01
Byte Count	02	Error Check (LRC or CRC)	C) ??
Logical Number	(1) (*)		??
Error Check (LRC or CRC)	??		
(*) Accepted values:from \$01 to \$FF			

READING OFTHE SERIAL COMMUNICATION PARAMETERS (Function Code \$03)				
QUERY				
		RESPONSE		
Field Name	Example (Hex)		Field Name	Example (Hex)
Slave Address	01		Slave Address	01
Function Code	03	Function Code	03	
Starting Address Hi	1 A	Starting Address Hi	1 A	
Starting Address Lo	28	Starting Address Lo	28	
Number Of Word Hi	00	Number Of Word Hi	00	
Number Of Word Lo	03	Number Of Word Lo	03	
Byte Count	01		Error Check (LRC or CRC)	$? ?$
Baud Rate Hi	00		$? ?$	
Baud Rate Lo	03	(1)		
Parity Hi	00			
Parity Lo	01	(2)		
Bit Hi	00			
Bit Lo	08	(3)		
Error Check (LRC or CRC)	$? ?$			
	$? ?$			
(1): Baud Rate=2400 Baud				
(2): Parity=Even				
(3): Bit=8/RTU				

SET UP OF THE DATE/HOUR/DAY (Function Code \$10)			
QUERY		RESPONSE	
Field Name	Example (Hex)	Field Name Ex	mple (Hex)
Slave Address	01	Slave Address	01
Function Code	10	Function Code	10
Starting Address Hi	1A	Starting Address Hi	1A
Starting Address Lo	21	Starting Address Lo	21
Number Of Word Hi	00	Number Of Word Hi	00
Number Of Word Lo	07	Number Of Word Lo	07
Byte Count	OE	Error Check (LRC or CRC)	??
Year Hi	00 ??		
Year Lo	5 F (1)		
Month Hi	00		
Month Lo	OA (2)		
Day Hi	00		
Day Lo	05 (3)		
Hours Hi	00		
Hours Lo	09 (4)		
Minutes Hi	00		
Minutes Lo	2A (5)		
Second Hi	00		
Second Lo	00 (6)		
Day of Week Hi	00		
Day of Week Lo	04 (7)		
Error Check (LRC or CRC)	??		
(1): Year=95			
(2): Month=10			
(3): $\mathrm{Day}=05$			
(4): Hours=09			
(5): Minutes=42			
(6). Second=00			
(7): Day Of Week= THURSDAY			

SET UP OF THE CTS \& VTS TRANSFORM RATIOS (Function Code \$ 10)
QUERY

Field Name	Example (Hex)	Field Name Ex	Example (Hex)
Slave Address	01	Slave Address	01
Function Code	10	Function Code	10
Starting Address Hi	1A	Starting Address Hi	1A
Starting Address Lo	2B	Starting Address Lo	2B
Number Of Word Hi	00	Number Of Word Hi	00
Number Of Word Lo	02	Number Of Word Lo	02
Byte Count	04	Error Check (LRC or CRC)	C) ??
CTS Hi		01	??
CTS Lo	2 C (1)		
VTS Hi	00		
VTS Lo	64 (1)		
Error Check (LRC or CRC)	??		
	??		

(1): CTS=300 (1.500/5)
(1): VTS $=100(10.000 / 100)$

SET UP OF THE PULSE DIGITAL OUTPUTS PARAM.(Function Code \$10)			
QUERY		RESPONSE	
Field Name	Example (Hex)	Field Name Ex	Example (Hex)
Slave Address	01	Slave Address	01
Function Code	10	Function Code	10
Starting Address Hi	1A	Starting Address Hi	1A
Starting Address Lo	A0	Starting Address Lo	A0
Number Of Word Hi	00	Number Of Word Hi	00
Number Of Word Lo	04	Number Of Word Lo	04
Byte Count	08	Error Check (LRC or CRC)	C) ??
Mode Hi	00		??
Mode Lo	03 (1)		
Associated Variable Hi	00		
Associated Variable Lo	B0 (2)		
Pulse Coeefficient Hi	00		
Pulse Coefficient Lo	7D (3)		
Pulse Duration Time Hi	00		
Error Check (LRC or CRC)	FA (4)		
	$? ?$		

(1): Mode = Pulse
(2): Associated Variable = 3-Phase System Active Energy
(3): Pulse Coefficient $=0,125$
(4): Pulse Duration Time $=250 \mathrm{msec}$.
$\left.\begin{array}{|lclll}\hline \text { SET UP OF THE THRESHOLD DIGITAL OUTPUTS (Function Code \$ 10) } & \\ \text { QUERY } & & \text { RESPONSE } & \\ & & \text { Example (Hex) } & & \text { Field Name }\end{array}\right]$
(1): Mode = Upper limit
(2): Associated Variable $=$ Phase VIoltage $\mathrm{L}_{1-\mathrm{N}}$
(3): Pulse Coefficient $=$ it has not effect in upper limit mode
(4): Pulse Duration Time $=$ it has not effect in upper limit mode
(5): Intervention Value (Set) $=3000 \mathrm{~V}$
(6): Histeresys Percentage Value $=5 \%$
(7): Delay Time On Threshold Intervention $=16 \mathrm{sec}$.

QUERY		RESPONSE	
Field Name Ex	Example (Hex)	Field Name Ex	Example (Hex)
Slave Address	01	Slave Address	01
Function Code	10	Function Code	10
Starting Address Hi	1A	Starting Address Hi	1A
Starting Address Lo	E0	Starting Address Lo	E0
Number Of Word Hi	00	Number Of Word Hi	00
Number Of Word Lo	04	Number Of Word Lo	04
Byte Count	08	Error Check (LRC or CRC)) ??
Mode Hi	00		??
Mode Lo	00 (1)		
Associated Variable Hi	00		
Associated Variable Lo	A0 (2)		
Percentage Minimun Value Hi	i 17		
Percentage Minimum Value Lo	- 70 (3)		
Percentage Maximun Value Hi	Hi 1D		
Percentage Maximum Value Lo	Lo 4C (4)		
Error Check (LRC or CRC)	$\begin{aligned} & ? ? \\ & ? ? \end{aligned}$		

(1): Mode $=0+20 \mathrm{~mA}$ bidirectional
(2): Associated Variable = 3-Phase System Active Power
(3): Percentage Minimum Value $=60,00 \%$
(4): Percentage Maximum Value $=75.00 \%$

SETUP THE 15' AV.POWER STORING (Function Code \$ 10)				
QUERY		RESPONSE		
Field Name	Example (Hex)		Field Name	Example (Hex)
Slave Address	01		Slave Address	01
Function Code	10	Function Code	10	
Starting Address Hi	1 A	Starting Address Hi	1 A	
Starting Address Lo	91	Starting Address Lo	91	
Number Of Word Hi	00	Number Of Word Hi	00	
Number Of Word Lo	01	Number Of Word Lo	01	
Byte Count	02	Error Check (LRC or CRC)	$? ?$	
Data stored in RAM Hi	00		$? ?$	
Data stored in Ram Lo	01			
Error Check (LRC or CRC)	$? ?$			
	$? ?$			

15’ AV.POWER VALUES STORED IN RAM TRANSFER (Funct.Code \$ 03 \& 10)

QUERY A (reading of the 15' energy counter value of the instrument EMA)

Field Name	Example (Hex)	
Slave Address	01	
Function Code	03	
Starting Address Hi	16	(IEEE=26)
Starting Address Lo	00	(IEEE=00)
Number Of Word Hi	00	(IEEE=00)
Number Of Word Lo	$0 D$	(IEEE=09)
Error Check (LRC or CRC)	$? ?$	
	$? ?$	

RESPONSE A (if the questioned EMA has no value stored in memory)

Field Name	Example (Hex)
Slave Address	01
Function Code	83
Error Code	??
Error Check (LRC or CRC) ??	
RESPONSE A (if the questioned EMA has stored more than one 15' energy value)	
Field Name	Example (Hex)
Slave Address	01
Function Code	03
Byte Count	1A
Logical number Hi	00
Logical number Lo	01
Year Hi	00
Year Lo	$5 \mathrm{~F}=96$
Mounth Hi	00
Mounth Lo	$08=08$
Day Hi	00
Day Lo	$1 \mathrm{~A}=26$
order number of 15' energy value Hi	00
order number of 15 ' energy value Lo	$05=05$
Data Hi	\| Value with 4 word $\times 15$ '
Data Lo	\| active energy
Data Hi	
Data Lo	
Data Hi	\| Value with 4 word $\times 15{ }^{\prime}$
Data Lo	\| reactive energy
Data Hi	
Data Lo	\|
or (for IEEE)	
Data Hi	\| Value with 2 word x 15'
Data Lo	\| active energy
Data Hi	\| Value with 2 word $\times 15$ '
Data Lo	\| reactive energy
Error Check (LRC or CRC)	??
	??

QUERY B (Erasing from the instrument the value just read. It's necessary to archive the following value)

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	92
Number Of Word Hi	00
Number Of Word Lo	01
Byte Count	02
Delate first 15' stored in Ram Hi	00
Delete first 15' stored in Ram Lo	01
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE B

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	92
Number Of Word Hi	00
Number Of Word Lo	01
Error Check (LRC or CRC)	$? ?$
	$? ?$

SETUP THE MIN/MAX VALUES STORING (Function Code \$ 10)

QUERY A (setup the data to store in RAM)

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	91
Number Of Word Hi	00
Number Of Word Lo	01
Byte Count	02
Data stored in RAM Hi	00
Data stored in RAM Lo	02
Error Check (LRC or CRC)	$? ?$
	$? ?$

QUERY B (setup the MIN/MAX value and time to store in RAM)

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1A
Starting Address Lo	40
Number Of Word Hi	00
Number Of Word Lo	0D
Byte Count	1A
Time to store in RAM HI	00
Time to store in RAM Lo	02
3-Phase System Voltage Hi	00
3-Phase System Voltage Lo	01 =Store ON
Phase $\mathrm{L}_{1-\mathrm{N}}$ Voltage Hi	00
Phase $\mathrm{L}_{1-\mathrm{N}}$ Voltage Lo	$00=$ Store OFF
Phase $\mathrm{L}_{2-\mathrm{N}}$ Voltage Hi	00
Phase L $\mathrm{L}_{2-\mathrm{N}}$ Voltage Lo	$00=$ Store OFF
Phase $\mathrm{L}_{3-\mathrm{N}}$ Voltage Hi	00
Phase L ${ }_{3-\mathrm{N}}$ Voltage Lo	$00=$ Store OFF
3-Phase System Current Hi	00
3-Phase System Current Lo	01 =Store ON
Phase L_{1} Current Hi	00
Phase L ${ }_{1}$ Current Lo	00 =Store OFF
Phase L_{2} Current Hi	00
Phase L2 Current Lo	$00=$ Store OFF
Phase L_{3} Current Hi	00
Phase L_{3} Current Lo	$00=$ Store OFF
3-Phase System Active Power Hi 00	
3-Phase System Active Power Lo 01	=Store ON
3-Phase System Apparent Power Hi	00
3-Phase System Apparent Power Lo	01 =Store ON
3-Phase System Power Factor Hi 00	
3-Phase System Power Factor Lo 01	$=$ Store ON
3-Phase System Average Power Hi	00
3-Phase System Average Power Lo	01 =Store ON
Error Check (LRC or CRC)	??
	??

RESPONSE A

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	91
Number Of Word Hi	00
Number Of Word Lo	01
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE B

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	40
Number Of Word Hi	00
Number Of Word Lo	0 D
Error Check (LRC or CRC)	$? ?$
	$? ?$

MIN/MAX VALUES STORED IN RAM TRANSFER (Function Code \$ 03 \& \$ 10)

QUERY A (reading of the data format of the MIN/MAX values stored in the RAM of the instrument EMA)

Field Name	Example (Hex)
Slave Address	01
Function Code	03
Starting Address Hi	1 B
Starting Address Lo	30
Number Of Word Hi	00
Number Of Word Lo	07
Error Check (LRC or CRC)	$? ?$
	$? ?$

QUERY B (reading of the first group of MIN/MAX stored data in the RAM of the instrument EMA)

Field Name	Example (Hex)
Slave Address	01
Function Code	03
Starting Address Hi	1 B
Starting Address Lo	47
Number Of Word Hi	00
Number Of Word Lo	64
Byte Count	C8
Error Check (LRC or CRC)	$? ?$
	$? ?$

QUERY C (reading of the tenth group of MIN/MAX stored data in the RAM of the instrument EMA)

Field Name	Example (Hex)
Slave Address	01
Function Code	03
Starting Address Hi	1 E
Starting Address Lo	CB
Number Of Word Hi	00
Number Of Word Lo	64
Byte Count	C8
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE A (if the questioned EMA has no value stored in memory)

Field Name	Example (Hex)
Slave Address	01
Function Code	83
Error Code	09
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE A (if the questioned EMA has stored more than one MIN/MAX value)

Field Name	Example (Hex)
Slave Address	01
Function Code	0 E
Byte Count	1 A
Start recorder Year Hi	00
Start recorder Year Lo	$5 \mathrm{~F}=95$
Start recorder Mounth Hi	00
Start recorder Mounth Lo	$08=08$
Start recorder Day Hi	00
Start recorder Day Lo	$1 \mathrm{~A}=26$
Start recorder Hour Hi	00
Start recorder Hour Lo	$10=10$
Start recorder Minute Hi	00
Start recorder Minute Lo	$2 \mathrm{~A}=42$
Start recorder Second Hi	00
Start recorder Second Lo	$2 \mathrm{D}=45$
Storing time (minutes) Hi	00
Storing time (minutes) Lo	$02=02$
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE B

Field Name	Example (Hex)
Slave Address	01
Function Code	03
Byte Count	C 8
Block num (a) Hi	00
Block num (a) Lo	00
Block num (b) Hi	00
Block num (b) Lo	01
Null word	00
Block full Hi	0 A
Block full Lo	12
$:$	\mid MIN/MAX
$:$	\| Values
1st group of MIN/MAX	\| with 100
$:$	\mid Word
$:$	$\mid(\$ 64)$
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE C

Field Name	Example (Hex)
Slave Address	01
Function Code	03
Byte Count	C8
\vdots	\mid MIN/MAX
\vdots	\| Values
10 st group of MIN/MAX	\| with 100
\vdots	\mid Word
\vdots	$\mid(\$ 64)$
Error Check (LRC or CRC)	$? ?$
	$? ?$

QUERY D (presetting the instrument to send the following RESPONSE D ten groups of MIN/MAX stored data. It's necessary to archieve the following value)

Field Name	Example (Hex)		Field Name	Example (Hex)	
Slave Address	01			Slave Address	01
Function Code	10			Function Code	10
Starting Address Hi	1 A			Starting Address Hi	1 A
Starting Address Lo	93			Starting Address Lo	93
Number Of Word Hi	00			Number Of Word Hi	00
Number Of Word Lo	01			Number Of Word Lo	01
Byte Count	02		Error Check (LRC or CRC)	$? ?$	
Delete first ten groups of MIN/MAX stored Hi	00			$? ?$	
Delete first ten groups of MIN/MAX stored Lo	01			$?$	
Error Check (LRC or CRC)	$? ?$				
		$? ?$			

QUERY E (reading of the eleventh group of MIN/MAX RESPONSE E stored data in the RAM of the instrument EMA)

Field Name	Example (Hex)	Field Name	Example (Hex)
Slave Address	01	Slave Address	01
Function Code	03	Function Code	03
Starting Address Hi	1B	Byte Count	C8
Starting Address Lo	47	:	\| MIN/MAX
Number Of Word Hi	00	:	Values
Number Of Word Lo	64	1st group of MIN/MAX	with 100
Byte Count	C8	:	Word
Error Check (LRC or CRC)	??	:	\|(\$64)
	??	Error Check (LRC or CRC)	??

SETUP THE 15' HARMONICS STORING (Function Code \$ 10)

QUERY		RESPONSE	
Field Name	Example (Hex)	Field Name	Example (Hex)
Slave Address	01	Slave Address	01
Function Code	10	Function Code	10
Starting Address Hi	1A	Starting Address Hi	1A
Starting Address Lo	91	Starting Address Lo	91
Number Of Word Hi	00	Number Of Word Hi	00
Number Of Word Lo	01	Number Of Word Lo	01
Byte Count	02	Error Check (LRC or CRC)	??
Data stored in RAM Hi	00		??
Data stored in RAM Lo	04		
Error Check (LRC or CRC)	??		
	??		

15'HARMONICS VALUES STORED IN RAM TRANSFER (Funct.Code \$03 \& \$10)

QUERY A (reading the value of voltage V
harmonics stored in the RAM of the instrument EMA)

Field Name	Example (Hex)
Slave Address	01
Function Code	03
Starting Address Hi	16
Starting Address Lo	(IEEE=26)
Number Of Word Hi	$60 \quad$ (IEEE=60)
Number Of Word Lo	00
Error Check (LRC or CRC)	69
	$? ?$
	$? ?$

RESPONSE A (if the questioned EMA
has no value stored in memory)

Field Name	Example (Hex)
Slave Address	01
Function Code	83
Error Code	09
Error Check (LRC or CRC)	$? ?$

RESPONSE A (if the questioned EMA has stored more then one 15 ' harmonics)

Field Name	Example (Hex)
Slave Address	01
Function Code	03
Byte Count	D 2
Logical number Hi	00
Logical number Lo	01
Year Hi	00
Year Lo	$5 \mathrm{~F}=96$
Mounth Hi	00
Mounth Lo	$08=08$
Day Hi	00
Day Lo	$1 \mathrm{~A}=26$
$1^{\text {st }}$ Voltage harmonic L1 phase Hi	00
$1^{\text {st }}$ Voltage harmonic L1 phase Lo	$05=05$
$:$	\mid other 24
$:$	\mid values
$: 15$ 'harmonics stored value	\mid with 4
$:$	\mid word for
$:$	\mid each
or	(for IEEE)
$:$	\mid other 49
$: 15$ ' harmonics stored value	\mid values with
$:$	$\mid 2$ word
$:$	\mid for each
Error Check (LRC or CRC)	$? ?$
	$? ?$

QUERY B (Erasing from the instrument the value just read.It's necessary to archieve the following value)

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	94
Number Of Word Hi	00
Number Of Word Lo	01
Byte Count	02
Delete first 15' harmonics value stored Hi	00
Delete first 15' harmonics value stored Lo	01
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE B

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	94
Number Of Word Hi	00
Number Of Word Lo	01
Error Check (LRC or CRC)	$? ?$
	$? ?$

SETUP THE SAMPLES STORING (Function Code \$ 10)

QUERY (setting of a odd number of samples)	
Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	4 D
Number Of Word Hi	00
Number Of Word Lo	05
Byte Count	0 A
Sample Rate Hi	00
Sample Rate Lo	01
Data stored in RAM Hi	80
Data stored in RAM Lo	81
Data stored in RAM Hi	83
Data stored in RAM Lo	88
Data stored in RAM Hi	8 B
Data stored in RAM Lo	90
Data stored in RAM Hi	B 4
Data stored in RAM Lo	00
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	4 D
Number Of Word Hi	00
Number Of Word Lo	05
Error Check (LRC or CRC)	$? ?$
	$? ?$

QUERY (setting of a even number of samples)

Field Name	Example (Hex)
Slave Address	01

Slave Address 01
Function Code 10

Starting Address Hi 1A
Starting Address Lo 4D
Number Of Word Hi 00
Number Of Word Lo 05
Byte Count OA
Sample Rate Hi 00
Sample Rate Lo 01
Data stored in RAM Hi 80
Data stored in RAM Lo 81
Data stored in RAM Hi 83
Data stored in RAM Lo 88
Data stored in RAM Hi 8B
Data stored in RAM Lo 90
Data stored in RAM Hi 00
Data stored in RAM Lo 00
Error Check (LRC or CRC) ??

RESPONSE

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	4 D
Number Of Word Hi	00
Number Of Word Lo	05
Error Check (LRC or CRC)	$? ?$
	$? ?$

SAMPLES VALUES STORED IN RAM TRANSFER (Funct.Code \$03 \& \$10)

QUERY A (reading of the data format of the samples values stored in the RAM of the instrument EMA)

Field Name	Example (Hex)
Slave Address	01
Function Code	03
Starting Address Hi	$2 B$
Starting Address Lo	37
Number Of Word Hi	00
Number Of Word Lo	07
Error Check (LRC or CRC)	$? ?$
	$? ?$

QUERY B (reading the value of the samples values stored in the RAM of the instrument EMA)

Field Name	Example (Hex)	
Slave Address	01	
Function Code	03	
Starting Address Hi	$2 D \quad$ (IEEE)	
Starting Address Lo	A0 (IEEE)	
Number Of Word Hi	00	
Number Of Word Lo	46	
Error Check (LRC or CRC)	$? ?$	
	$? ?$	

QUERY C (Erasing from the instrument the value just read.It's necessary to archieve the following value)

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	95
Number Of Word Hi	00
Number Of Word Lo	01
Byte Count	02
Delete first samples value stored Hi	00
Delete first samples value stored Lo	01
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE A (if the questioned EMA has no value stored in memory)

Field Name	Example (Hex)
Slave Address	01
Function Code	83
Error Code	09
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE A (if the questioned EMA has stored one or more sample value)

Field Name	Example (Hex)
Slave Address	01
Function Code	03
Byte Count	0 E
Start recorder Year Hi	00
Start recorder Year Lo	$09=2009$
Start recorder Mounth Hi	00
Start recorder Mounth Lo	$01=$ January
Start recorder Day Hi	00
Start recorder Day Lo	$1 \mathrm{~A}=26$
Start recorder Hour Hi	00
Start recorder Hour Lo	$10=10$
Start recorder Minute Hi	00
Start recorder Minute Lo	$2 \mathrm{~A}=42$
Start recorder Second Hi	00
Start recorder Second Lo	$2 \mathrm{D}=45$
Storing time (seconds) Hi	00
Storing time (seconds) Lo	$02=01$
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE B (if the questioned EMA
has no value stored in memory)

Field Name	Example (Hex)
Slave Address	01
Function Code	83
Error Code	09
Error Check (LRC or CRC)	$? ?$
RESPONSE B (if the questioned EMA has	
stored one or more samples)	
Field Name	Example (Hex)
Slave Address	01
Function Code	03
Byte Count	8 C
$:$	$\mid 35$ values
$: 35$ samples stored values	\mid with 2 word
$:$	\mid for each
Error Check (LRC or CRC)	$? ?$
	$? ?$

RESPONSE C

Field Name	Example (Hex)
Slave Address	01
Function Code	10
Starting Address Hi	1 A
Starting Address Lo	95
Number Of Word Hi	00
Number Of Word Lo	01
Error Check (LRC or CRC)	$? ?$
	$? ?$

2.9) TROUBLESHOOTING

If response from EMA doesn't happen:

- check connection from EMA and RS232/RS485 converter ;
- check if data outgoing from the RS232 serial port of the PC come in the RS232/485 converter
- try to increase the wait time for response (50 to 100 mS is good);
- check if the transmitted data stream is EXACTLY as in example, monitoring the data on the RS485 serial line with a terminal (eg. Hyperterminal or other emulator);
- if the RS232/485 converter is not our model CUS, be sure the turnaround-time is set in range 1 to 2 mS

2.10) NOTES

