

EMM-dc-PF-S Communication Protocol

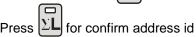
EMM-dc MULTIMETER PROFIBUS DP-V0

This manual describes the communication protocol for the EMM-dc-PF-S profibus interface.

This interface implement the DP-V0 slave in profibus DP network.

up to see Id Adr


PROFIBUS AND EMM-dc-PF-S


Profibus-DP is a multi-master system. In the networks it's possible to have up to 126 devices on the same bus. In profibus-DP networks, the interchange of data between peripheral modules and the master is made automatically by the profibus controller, which 'virtualise' the data exchange memory of the DP devices in the memory of the master.

EMM-dc-PF-S Address Setting

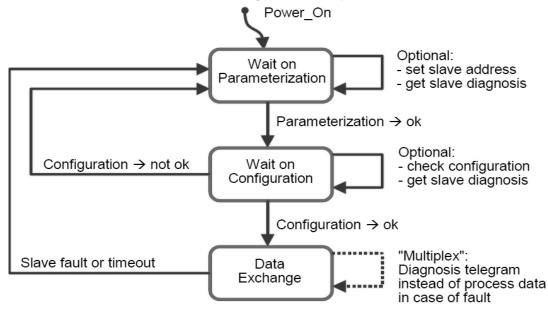
Press

EMM-PF-S Version and Revision

Entry to menu: Σ see on the display **Set Up**

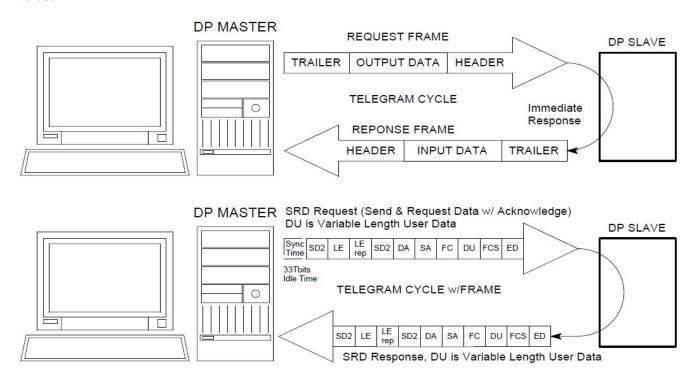
Press up to see **Profibus.** In this page it possible to read EMM-dc-PF-S version and revision.

See EMM User Manual for more info.

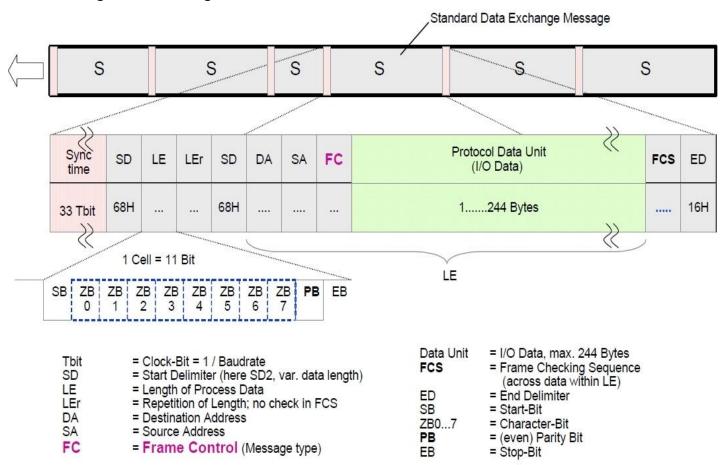

EMM-dc-PF-S Baudrate Supported

The EMM-dc-PF-S supported the following communication baud rate:

9,6 Kb	t/s 19.2 Kbit/s	45,45 Kbit/s	93,75 Kbit/s	187.5 Kbit/s	500 Kbit/s	1.5 Mbit/s	3 Mbit/s
--------	-----------------	--------------	--------------	--------------	------------	------------	----------

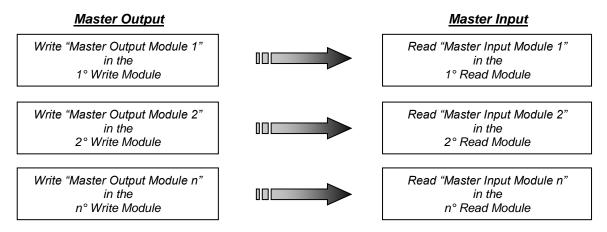

The EMM-dc-PF-S detect the baud rate network automatically.

Example of Profibus Parameterization and Configuration Sequence:



Data exchange handshake from Master to EMM-dc-PF-S:

- 1) The Master place in output memory the indexes (or indexes + values).
- 2) Data are transferred from output memory of the master to input memory of the EMM-dc-PF-S slave.
- 3) EMM-PF-S read the indexes send by the master and write on its output memory area the data (measures) requested.
- 4) Measures are transferred from output data of the EMM-dc-PF-S to profibus master input memory area.
- 5) The application program, present in the master profibus, read the data from input memory and show the measures to the user.



Format Message - Data Exchange

Communication Structure EMM-dc-PF-S:

The communication with the instrument is projected "in Module". The input (master) module is 4 bytes long and the output (master) module is 6 bytes long. Each "write" module allow to send one index (see Read Commands Table) corresponding at the measure that it must read from master module (input). If it sent the index value in the *first master output module* the read value will be return in the *first master input module*, if it sent the index value in the *second master output module* the read value will be return in the *second master input module*, etc.

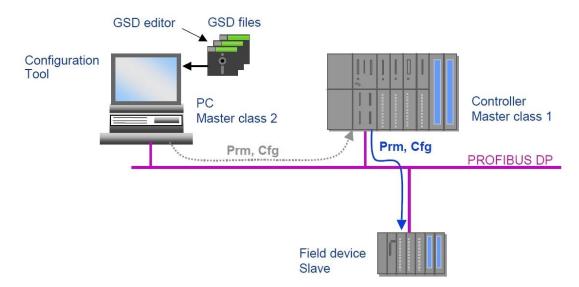
Comunication Structure Example

This structure allow to change in "real time" order and type of measure to read from EMM-dc-PF-S instrument. Each *Master Input Module* is formed by **4 Byte / 2 Word** (it's possible to read max 28 modules at the same time) and the *Master Output Module* is format by **6 Byte / 3 Word** (it's possible to write max 28 modules at the same time).

<u>WARNING:</u> Before read the measures (Master Input Module), the Master must send the indexes corresponding (Master Output Module). If you don't send any indexes the EMM-dc-PF-S will be return the first 28 measures.

<u>WARNING:</u> If it sends a only wrong Index or Parameter the instrument won't return any value until all Indexes and Parameters will be corrected. The EMM-dc-PF-S will produce a Diagnostic Message for notify the error presence.

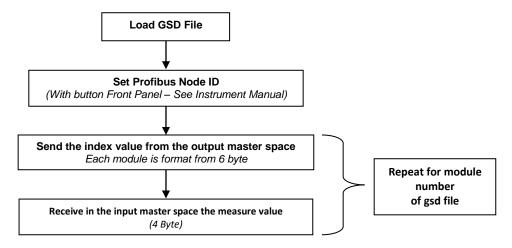
For example, this is the Master Outputs Structure for Read the measures.


N° Master Output Module	N° Measure	Measure	Used Byte
Zero Module	None	Write 0x0000	1° - 2° Byte
Index 1	0x0003	LINE CURRENT L ₁	3° - 4° Byte
Parameter 1.1	XXXX	Not Necessary	5° - 6° Byte
Parameter 1.2	XXXX	Not Necessary	7° - 8° Byte
Index 2	0x0004	LINE CURRENT L ₂	9° - 10° Byte
Parameter 2.1	XXXX	Not Necessary	11° - 12° Byte
Parameter 2.2	XXXX	Not Necessary	13° - 14° Byte

WARNING: It is necessary to send at least 4 words (zero module+index1+parameter1.1+parameter1.2).

WARNING: The read operation must be completed without interruption by other parts of the program.

GSD File


The GSD files supplied with the EMM-dc-PF-S instrument:

GSD Name	N° Input Byte	N° Master Input Module	N° Output Byte	N Master Output Module	N° Tot Module
EMMPFS	114 Byte	28	170 Byte	28	57

The GSD file designed for improve the input/output space and speed on profibus master, because it is possible to insert from 1 to 28 module for input and from 1 to 28 module to output.

Flow Chart Configuration EMM-dc-PF-S

In the Master Program:

- 1) Load GSD File.
- 2) Setting the EMM-dc-PF-S Node Id in you project (Node ID on the instrument is setting with frontal panel).
- 3) Insert the Module that it necessary for application (if not insert automatically from program during loading gsd file).
- 4) Write the module index (corresponding at the measure that must read) in the master output space.
- 5) Receive in the master the measure value (first module if you send the first module in master output).
- 6) Repeat point 4 and 5 for all modules.

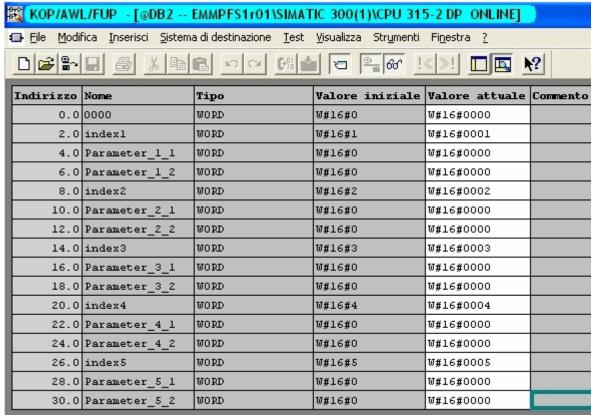


Fig.1: File DB2 (Step7)

For each measure to read it's necessary to send the corresponding index (the first 2 bytes for each module). In this example are read the first nine measures, but it's possible to read any measure (max 28) in any order. In this way it's possible to read the measures in the Master input space (**DB1** Step 7 File).

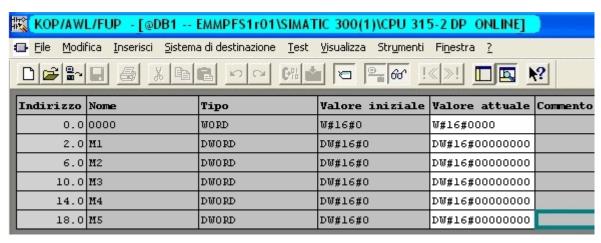


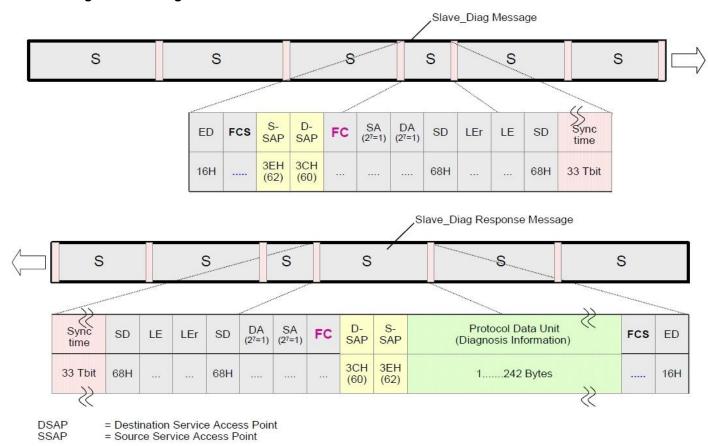
Fig.2: File DB1 (Step7)

Index Measures Table

EMM-dc-PF-S Indexes corresponding at the measures:

- READ REGISTERS -

Index [Hex]	Index [Dec]	EMM 4dc	EMM 4d2c	Description	M. U.	Туре
0x0001	1	Χ	X	PHASE VOLTAGE V _L	[V*10]	(Signed)
0x0002	2	Х	Х	PHASE VOLTAGE V _L	[V*10]	(Signed)
0x0003	3	Х	Х	LINE CURRENT L₁	[mA]	(Signed)
0x0004	4	Х	Х	LINE CURRENT L ₂	[mA]	(Signed)
0x0005	5	Х	not present	LINE POWER L ₁	[W*10]	(Signed)
0x0006	6	Х	not present	LINE POWER L ₂	[W*10]	(Signed)
0x0007	7	Х	not present	CURRENT SUM L ₁ +L ₂	[mA]	(Signed)
0x0008	8	Х	not present	POWER SUM L ₁ +L ₂	[W*10]	(Signed)
0x0009	9	Х	not present	LINE POSITIVE / IMPORTED ENERGY L ₁	[100*Wh]	(Signed)
0x000A	10	Х	not present	LINE NEGATIVE / EXPORTED ENERGY L ₁	[100*Wh]	(Signed)
0x000B	11	Х	not present	LINE POSITIVE / IMPORTED ENERGY L2	[100*Wh]	(Signed)
0x000C	12	Х	not present	LINE NEGATIVE / EXPORTED ENERGY L2	[100*Wh]	(Signed)
0x000D	13	Х	not present	LINE POSITIVE / IMPORTED ENERGY SUM L1+L2	[100*Wh]	(Signed)
0x000E	14	Χ	not present	LINE NEGATIVE / EXPORTED ENERGY SUM L1+L2	[100*Wh]	(Signed)
0x000F	15	Х	Х	TEMPERATURE	[°C]	(Unsigned)
0x0010	16	Х	Х	HOURS COUNTER	[hr*10]	(Unsigned)
0x0011	17	Х	Х	MAX INSTANTANEOUS VOLTAGE VL	[V*10]	(Signed)
0x0012	18	Х	Х	MAX INSTANTANEOUS VOLTAGE V _L	[V*10]	(Signed)
0x0013	19	Х	Х	MAX INSTANTANEOUS CURRENT L ₁	[mA]	(Signed)
0x0014	20	Х	not present	MAX INSTANTANEOUS POWER L ₁	[W*10]	(Signed)
0x0015	21	Х	Х	MAX INSTANTANEOUS CURRENT L2	[mA]	(Signed)
0x0016	22	Х	not present	MAX INSTANTANEOUS POWER L ₂	[W*10]	(Signed)
0x0017	23	Х	not present	MAX INSTANTANEOUS CURRENT L ₁ +L ₂	[mA]	(Signed)
0x0018	24	Χ	not present	MAX INSTANTANEOUS POWER L ₁ +L ₂	[W*10]	(Signed)
0x0019	25	Х	X	MAX AVG CURRENT L₁	[mA]	(Signed)
0x001A	26	Х	not present	MAX AVG POWER L ₁	[W*10]	(Signed)
0x001B	27	Х	X	MAX AVG CURRENT L2	[mA]	(Signed)
0x001C	28	Х	not present	MAX AVG POWER L ₂	[W*10]	(Signed)
0x001D	29	Х	X	MAX AVG CURRENT L ₁ +L ₂	[mA]	(Signed)
0x001E	30	Х	not present	MAX AVG POWER L ₁ +L ₂	[W*10]	(Signed)
0x001F	31	Х	X	LAST AVG MAX INSTANTANEOUS CURRENT L ₁	[mA]	(Signed)
0x0020	32	Х	not present	LAST AVG MAX INSTANTANEOUS POWER L ₁	[W*10]	(Signed)
0x0021	33	Х	X	LAST AVG MAX INSTANTANEOUS CURRENT L2	[mA]	(Signed)
0x0022	34	Х	not present	LAST AVG MAX INSTANTANEOUS POWER L2	[W*10]	(Signed)
0x0023	35	Х	not present	LAST AVG MAX INSTANTANEOUS CURRENT L ₁ +L ₂	[mA]	(Signed)
0x0024	36	Х	not present	LAST AVG POWER L ₁ +L ₂	[W*10]	(Signed)
0x0025	37	Х	X	MAX PEAK TEMPERATURE	[°C]	(Unsigned)
0x0026	38	Х	Х	MAX AVG TEMPERATURE	[°C]	(Unsigned)
0x0027	39	Х	Х	LAST AVG TEMPERATURE	[°C]	(Unsigned)


STATUS READ COMMANDS

Index [Hex]	Index [Dec]	Description	Read	M. U.	Type
0x07D0	2000	STATUS LOW	Read	[-]	[-]
0x07D1	2001	STATUS HIGH	Read	[-]	[-]

DIAGNOSTIC

The EMM-PF-S is able to generate, in case of errors, some diagnostics, automatically. These diagnostics can be send to the Master profibus through a standard mechanism expected from the profibus protocol.

Format Message - Slave Diagnosis

Diagnostics generation mechanism

In the polling normal cycle, done by a Master station, there is not the request of the diagnostics message. It is the slave that informs the master that a diagnostics variation is occurred and that this message has to be asked.

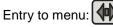
When there is a diagnostics variation (appears or disappears), during the formatting of the answer message from a normal data request, the EMM-dc-PF-S set the field FC (Frame Control).

The EMM-dc-PF-S generates a diagnostic message with this format (6+12 Byte long):

Default Profibus Diagnostic Data-Unit:

Doladik i Tembae Biagneotie Bata emit									
1° Byte	2° Byte	3° Byte	4° Byte	5° Byte	6° Byte				
Station Status 1	Station Status 2	Station Status 3	Diag. Master Add	Ident Number High	Ident Number Low				

Specific Profibus Diagnostic:


7° Byte	8° Byte	9° Byte	10° Byte	11° Byte	12° Byte
N° Byte Instrument	Status High	Status High	Status High	Status High 7-0 bit	Status Low
Diag	31-24 bit	23-16 bit	15-8 bit	Status High 7-0 bit	31-24 bit

13° Byte	14° Byte	15° Byte	16° Byte	17° Byte	18° Byte
Status Low 23-16 bit	Status Low 15-8 bit	Status Low 7-0 bit	In/out error	Module	N° Error

The Master could receive the following error:

Internal Communication break
Communication fail
Illegal index
Illegal data
30° bit = 1 in Status Low
29° bit = 1 in Status Low
28° bit = 1 in Status Low

EMM-dc-PF-S Read Software Revision (on the frontal panel)

see on the display Set Up

until see **Profibus Rev**

Wait a second and can see the version and revision of the instrument.

I-26900 Lodi - ITALY - Via S. Fereolo, 9 Tel. +39 0371 30207 / 30761 Fax +39 0371 32819 http://www.contrel.it - E-mail: contrel@contrel.it